Creative Design and Innovation

G12 Teacher's Guide

Term 3 2017-18

Table of Content:

Contents

Instructional Planner:	2
Lesson Plans:	12
Unit 1: Technologies in space exploration vehicles	12
Lesson 1: Vehicle design specifications	12
Lesson 2: Adapting to space vehicles	
Unit 3: Mars Electronics	
Lesson 1: Essentials of Arduino	
Lesson 2: Analogue and digital signals	43
Unit 3: Mars Electronics	54
Lesson 3: Space rover electronics	54
Unit 4: Space Rover Project	81
Lesson 1: Introduction to Space Rover project	81
Stage 1: Analysis of brief:	85
Stage 2: Research and investigation of possible solutions Stage 3: Possible solutions	
Stage 3: Possible solutions	92
Stage 4: Selection of final solution	95
Unit 4: Space Rover Project	97
Lesson 2: Design realistaion / manufacture of space rover	97
Unit 4: Space Rover Project	114
Lesson 3: Stage 5: Design realistaion / manufacture continued	114
Unit 4: Space Rover Project	118
Lesson 4: Project assembly and evaluation	118
Stage 6: Evaluation	122

Instructional Planner:

Week	Period		Unit/Lesson	Task	Page	Key skills	Assessment focus
1	1	Unit 1: Technologies in space exploration vehicles	Introduction Unit 1: Lesson 1 (Vehicle design specifications)	 Introduce the structure of the term based around a combination of preparation units and a final practical project. Introduce key words and learning outcomes for lesson 1 Explain function and operation of space rover. Introduce students to power sources and motors. Facilitate as pupil's complete activities 1.1-1.5 Introduce students to drivetrains and demonstrate sample rpm calculation Facilitate as pupils complete activity 1.6 Introduce students to suspension types Facilitate as pupil's complete activity 1.7 Complete Student reflection 	Pg. 11 Pg. 13/14 Pg. 15 Pg. 15-21 Pg. 22 Pg. 25 Pg. 25 Pg. 28 Pg. 29	 Define key words Distinguish between motor types Distinguish between drivetrains Complete RPM calculations Identify different suspension types and their advantages and disadvantages. 	
	2			 Introduce key words and learning outcomes for lesson 2 	Pg. 30/31	 Define key words Distinguish between 	

				Introduce students steering	Pg. 32	methods of
			Unit 1: Lesson	mechanism and skid steering		steering
			2	• Facilitate as pupils complete	Pg.33	Understand the
			(Adapting to	activities 2.1-2.3		operation and
			space vehicles)	• Introduce students to rocker-	Pg. 34-40	advantages of
				bogie suspension system.		rocker-bogie
				• Facilitate as student's complete		Model a rocker-
				activities 2.4-2.6	Pg. 38-40	bogie example
				• Facilitate and provide feedback		
				as student's model rocker-		
				bogie mechanism in activity 2.7	Pg. 41	
				Complete Student reflection	Pg. 42	
				 Introduce students to unit 2 		
				sustainability, Set homework		
				task to self-study this unit for		
				nextweek.		
				• State importance of	om	
			••••	sustainability in final project		
				which must include sustainable		
				design.		
						• Define key words
				 Introduce key words and 	Pg. 60/61	
		10		learning outcomes for lesson 1.	U	• Explain the role
		nic		• Introduce students to the role	Pg. 62	of the Arduino
		tro	Unit 3: Lesson	of Arduino microcontroller in	5	microcontrollerin
		lect	1	electronics.		electronics.
2	1	М	(Essentials of	 State the importance of the 		
		/lar	Arduino)	Arduino Leonardo board and	Pg.63-64	• Identify the main
		3: 2		Arduino IDE software.	_	parts of the
		Unit 3: Mars Electronics		• Facilitate as pupil's complete	Pg. 63-67	Arduino board.
		- C		activities 1.1-1.3.	_	
				Demonstrate Arduino code	Pg.68	Recognise the
				structure.	-	layout of the

		 Introduce students to the first program (On-Board LED) Facilitate as student's complete activity 1.4. Facilitate and provide feedback as student's go through the Arduino code syntax in activity 1.5. Complete the final activity and student reflection. State the importance of Arduino 	Pg. 69-70 Pg. 70 Pg. 71-72 Pg. 86-87	 Arduino IDE programming interface. Explain the Arduino programming structure.
2	Unit 3: Lesson 2 (Analogue and digital signals)	 programming which must be included in the final project. Introduce key words and learning outcomes for lesson 2. Introduce students to digital and analogue signals. Facilitate as pupil's complete activity 2.1. State the importance of Arduino functions. Introduce students to the first most important Arduino function that will be used in their project (digitalWrite) 	Pg. 88/89 Pg. 90-91 Pg.92 Pg. 93 Pg. 99 Pg. 100-	 Define key words Differentiate between digital and analogue signals. Interpret how to generate a digital signal. Identify how to
		 their project (digitalWrite). Facilitate as student's complete digital output-practical work, and activities 2.4-2.5. Introduce students to the second most important Arduino function that will be used in their project (analogWrite). 	Pg. 100- 102 Pg. 108- 109	 Identify how to generate an analogue signal. Describe the function of PWM signals in electric circuits.

				 Facilitate and provide feedback as student's complete analogue output-practical work, and activity 2.8. Complete the student reflection. State the importance of Arduino programming which must be included in the final project. 	Pg. 110- 112 Pg. 115	
3	1	Unit 3: Mars Electronics	WW Unit 3: Lesson 3 (Space rover electronics)	 Introduce key words and learning outcomes for lesson 3. Introduce students to space rover electronics and DC motors. Facilitate as pupils complete DC Motor- practical work and activities 3.1-3.2. State the importance of the motor driver parts and functions. Facilitate as student's complete <u>step 1</u>: Connecting the DC motors to the motor driver. Introduce students to the importance of controlling the rotation and direction of DC motors. Facilitate as student's complete <u>step 2</u>: Using Arduino to control the direction and rotation of DC motors and activities 3.3-3.5. 	Pg. 116 & Pg. 117 Pg. 118 Pg. 119-122 Pg. 124- 125 Pg. 126- 128 Pg. 129 Pg. 129 Pg. 129- 133	 Define Key words Identify the function of a motor driver. Assemble electronic components to build a complete circuit of a space rover.

	2		Unit 3: Lesson 3 (Space rover electronics)	 Introduce the Bluetooth module-wireless communication. Facilitate as student's complete <u>step 3:</u> Connecting the Bluetooth module to the circuit. Introduce students to a switch case statement. Facilitate as student's complete activities 3.7-3.8. Provide feedback as students write the full code for the space rover project. After completing the circuit and code of the space rover pupils will need to test the space rover. Complete the student reflection and provide feedback. 	Pg. 135- 136 Pg. 137- 138 Pg. 139- 141 Pg. 139- 141 Pg. 142 Pg. 142 Pg. 143 OM Pg. 163	 Develop and evaluate an Arduino code using a switch statement. Use a Bluetooth module between a mobile application and Arduino. Assemble electronic components to build a complete circuit of a space rover.
4	1	Unit 4: Space Rover Project	Unit 4: Space rover project: Stage 1: Analysis of brief Stage 2: Research and investigation	 Introduce students to the aim and learning outcomes of the project. Explain key word of project and ensure understanding Introduce the project brief and mark breakdown Introduce Stage 1: Analysis of brief 	Pg. 165 Pg. 166 / 167 Pg. 168 Pg. 169	 Define Key words Analyse a brief Types of research

	solutions	 Demonstrate methods and key tips for correctly analyzing a brief. In groups discuss the brief and break down into a mind map Facilitate as student's complete activities 1.1-1.2 Introduce students to stage 2: research and investigation Use LMS resources to demonstrate different research methods Note students should not begin to research in class yet. 	Week 4 LMS resources Pg. 172	
2	Stage 3: Possible solutions Stage 4: Final solution	 Introduce students to stage 3: possible solutions Use LMS resources to ensure students understand how to shape possible solutions from research obtained. Note possible solutions are not sketched at this point, this is knowledge development not application. Introduce students to stage 4: Final solution Explore critical thinking and facilitate as students complete Activity 1.5 Explain the importance of taking positives from possible solutions to create one final 	Pg. 175	 Identify key aspects of possible solutions Produce a mind map Recognise research types and methods Generate research

		WW	 design that will be manufactured. Facilitate as students use knowledge gained to complete research on research page or mood boards. At least 2 possible solutions must be produced by EACH PUPIL before week 5 (encourage more than 2 on extra paper if needed) Stages 2,3 and 4 should be completed for the rest of the lesson and homework. A final Design must be presented in week 5 Note encourage students to come for design feedback throughout the week. 	om	 Sketch possible solutions Generate final solution from possible solutions.
5	1	Stage 4: Final solution Stage 5: Design realisation / manufacture (Electronics)	 Groups should present their final solution to the class and teacher. Provide feedback on final designs based on satisfying the brief. Introduce students to the 3 aspects of design realization. Facilitate students completing activity 1.6 to reinforce knowledge of manufacturing tools and resources. 		 Presentation of final solutions Identify aspects of design realization. Assemble electronic components to build a complete circuit of a space rover.

		 Teacher will facilitate students as they continue to assembly their electronic circuit. Facilitate as pupils' complete activities 1.7-1.9. Facilitate as students draw modified circuit diagram for full space rover. Correct diagrams before facilitating as students build their final circuits in groups. Going back to the electronics steps: Introduce students to step 4: Connecting SPST and DPST switches to the space rover circuit from Unit 3-lesson 3. Facilitate as pupils' complete activities 3.9-3.10 (Unit 3- lesson 3). Solder DPST switch to the final circuit. Facilitate as student's program and test the final circuit. 	Pg. 185- 187 Pg. 146- 147 Pg. 147-148 Pg. 147/148 Pg. 206 (Appendix 1)	 Compare between a SPST switch and a DPDT switch. Solder DPST switches into the final circuit. Program and evaluate final circuit
2	Stage 5: Design realisation / manufacture (Model and Manufacture	 Introduce students to model and manufacture stage. Facilitate as student's complete activities 1.10 and 1.11 to access fusion 360 parts. 	Pg. 188 Pg.189 / 190	 Analyse given parts Demonstrate and develop fusion 360 skills

		WW	 Facilitate as students create a Fusion 360 model of a complete space rover. Use TG resources to deliver micro fusion lessons depending on class level. Demonstrate areas that groups are struggling with or areas new to a class. Incorporate peer teaching if some groups are more proficient in fusion techniques than others. Facilitate any groups that may still be working on electronics, divide groups to ensure both tasks are being covered. Continue to facilitate as groups continue to model space rovers on fusion 360. 	om		
6	1-2	Stage 5: Design realisation / manufacture (Model and Manufacture)	 In this lesson you will facilitate students as they continue to design on fusion 360. Facilitate those students who are still working on electronics. Facilitate as students paste images of final model in book. Recap on 3D printing process and facilitate as groups print space rover parts. 	Pg. 191	 Demonstrate and develop fusion 360 skills 	
7	1	Stage 5: Design realisation / manufacture	 Introduce students to final assembly of manufactured parts. Ensure all parts are 3D Printed. 	Pg. 194		

		(Assembly)	 Facilitate as groups assemble parts and circuit to complete a Space rover model. 		
	2	Stage 6: Evaluation	 Introduce students to the evaluation process. Facilitate as students test and evaluate final space rover. 	Pg. 196	
8	1-2	Summative assessments	 Teachers carry out summative assessment 		
9	1-2	Project improvement	 Teachers use this week to allow students finalise and improve their project. 		

www.almanahj.com

Lesson Plans: <u>Unit 1: Technologies in space exploration vehicles</u> <u>Lesson 1: Vehicle design specifications</u>

<u> Aim:</u>

This lesson aims to introduce you to the function and key principles of vehicle design. You will understand the importance of motor types, power sources, drivetrain methods and suspension systems. You will then analyse and compare this information in relation to the design of a space rover.

Teacher Learning Objectives: Learning objective refers to what you as a teacher will have taught the student by the end of the lesson. Teachers are to tick the box when the they have covered a learning objective.

- \Box Explain function and operation of a space rover
- Demonstrate drivetrain types and sample calculations
- \Box Explain the operation of various suspension systems
- \Box Present possible power sources and the motor types they can power.

<u>Student Learning Outcomes:</u> Learning outcomes refer to what the student can expect from the lesson, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to:

- \Box Define a space rover.
- □ Compare possible drivetrains.
- Complete drivetrain rpm calculations.
- Recognise and compare various vehicle suspension systems.
- Differentiate between brushed and brushless motors.
- Analyse possible power sources.

Keywords	 What are the keywords the students must learn? space rover drivetrain suspension combustion crankshaft armature brush electromagnet
velocity ratio Resources What resources are required? textbooks projector calculator	
Prior Knowledge	Emirates Mars MissionOperation of DC motor

Possible Teaching Method(s) or Approach for this lesson

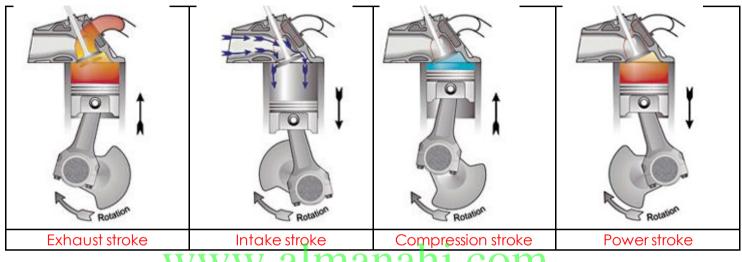
- Collaborative Teaching (student centred)
- Instructional / Demonstrative Teaching (teacher centred)
- □ Inquiry-based Teaching (student centred)
- □ Lecture Style Teaching (teacher centred)
- Coach Style Teaching (teacher centred)
- □ Facilitator Style Teaching (student centred)

www.almanahj.com

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

Торіс	Page		
	Essential	Non-essential/Self Study	
What is a space rover?	Pg. 15		
Power sources and motors	Pg. 15-21		
Drivetrains	Pg. 22-25		
Suspension systems		Pg. 25-28	


Development [Phases or chunks of learning]: Note: All lessons start with Phase 1, Lessons can move back and forth between phases 2 and 3 as content is covered and then students engage. All lessons must finish with phase 4 to evaluate learning. Phase 1 of lesson (Connect) Starter	Notes for differentiation: Note: All lessons can be different depending on ability and success of previous lesson. Place additional notes or activities to cater for differentiation where necessary through ought the lesson.	Assessment Opportunities:
Teacher to introduce students to the lesson aim. Teacher to place all student learning outcomes on the board and ensure student understanding of aims and outcomes. Discuss prior knowledge of space rovers and emirates mars mission. Show motivational videos / models to outline the end goal of the term.		Questioning.
Teacher Tip:Teacher to set high expectations which inspire, motivate and challenge pupils.Phase 2 of lesson (Activate)		
Teacher to introduce all key words, discuss meaning and ensure understanding before progressing. Teacher to explain space rover function from book. Question students on what aspects are new to them when compared to prior knowledge discussion. Teacher to introduce fossil fuels as a power source for internal combustion engine. Teacher to introduce electricity and DC motors as an alternative power source. Teacher to explain Brushed DC motor vs Brushless DC motor. Question students on possible advantages and disadvantages.	anahj.com	Questioning / Mind Map
Teacher to explain the function of drivetrains. Students to explore drivetrain types and complete sample calculations		
Teacher to introduce suspension types Students to explore and differentiate between the various suspension systems of traditional vehicles.		
Teacher Tip: Teacher to demonstrate good subject and curriculum knowledge		

		I
Phase 3 of lesson (Engage and Demonstrate) Divide students into groups assigning each group a power source and engine/motor type. Use an "Each on teach one" approach to have groups show their understanding and improve other groups understanding. Teacher to facilitate as peer teaching takes place. Students demonstrate learning by completing activities 1.1-1.5		Peer teaching Written Activities 1.1- 1.5 Peer teaching
Divide students into groups assigning each group a drivetrain. Use an "Each on teach one" approach to have groups show their understanding and improve other groups understanding of drivetrains. Teacher to facilitate as peer teaching takes place. Students demonstrate learning by completing activities 1.6		Written Activity 1.6 Peer teaching
Divide students into groups assigning each group a suspension system. Use an "Each on teach one" approach to have groups show their understanding and improve other groups understanding of suspension systems. Teacher to facilitate as peer teaching takes place. Students demonstrate learning by completing activities 1.7	anahj.com	Written Activity 1.7
<u>Teacher Tip:</u> Use groupwork as appropriate, get to know your class and organise groups to support mixed ability's.		Oral Assessment
Phase 4 Plenary (Consolidate) Teacher to facilitate as students evaluate learning. Question pupils on what they have learned. Have learning outcomes been met? Has the lesson aim been achieved? All students must complete student evaluation Students to complete activities 1.1-1.7 and finish for homework if uncomplete.		Student evaluation

Answer Key/ Resources

QR code links:		
Page	Торіс	Link
18	DC motors	https://www.youtube.com/watch?v=LAtPHANEfQo
27	Shock absorber	https://www.youtube.com/watch?v=vcSH2z706rU

Activity 1.1

Label the strokes of an internal combustion engine as shown below.

Activity 1.2

In the table below, match the correct stroke to the description.

Stroke:	Description
Compression stroke	The fuel and air mixture is compressed in the cylinder by the piston.
Exhaust stroke	Waste fumes are expelled from the cylinder.
Powerstroke	A spark plug ignites the compressed fuel mixture.
Intake stroke	Flammable fuel is fed into the cylinder through the inlet valve.

www.almanahj.com

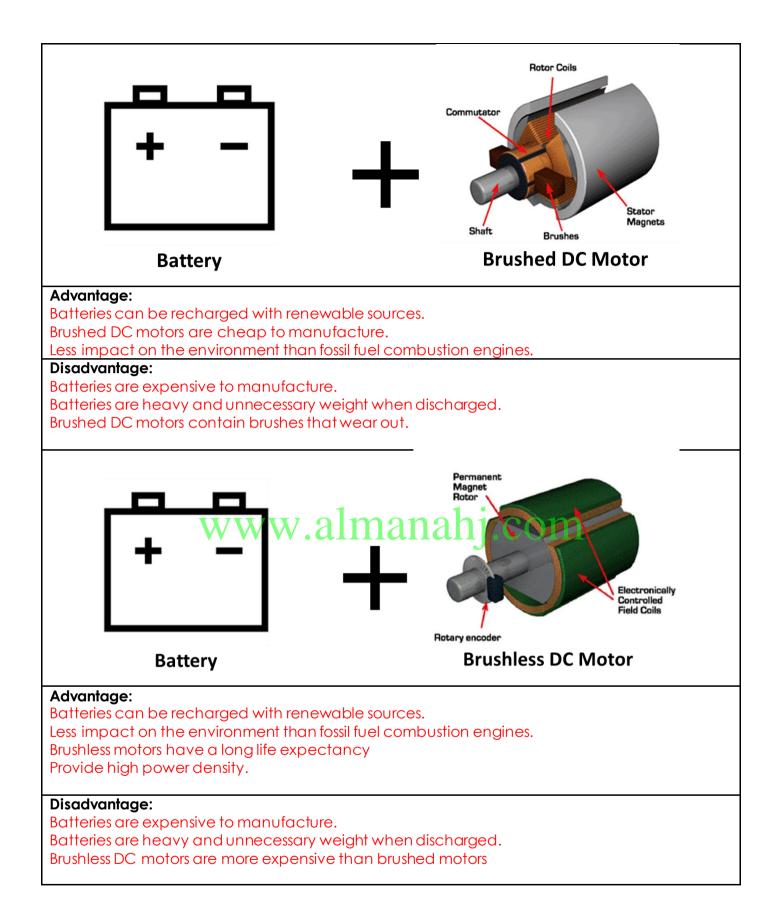
Activity 1.3		
Cheap to manufacture Difficult to cool electromagnet in rotor Brushed DC Motor Brushes limit amount of poles that armature can have Brushes in contact with rotor cause sparking and electrical noise	Simple operating system Brushes wear due to friction	

Figure 0.1

Figure 0.1 shows the key features of a brushed DC motor. In the box below, place these features under advantages or disadvantages of a brushed DC motor.

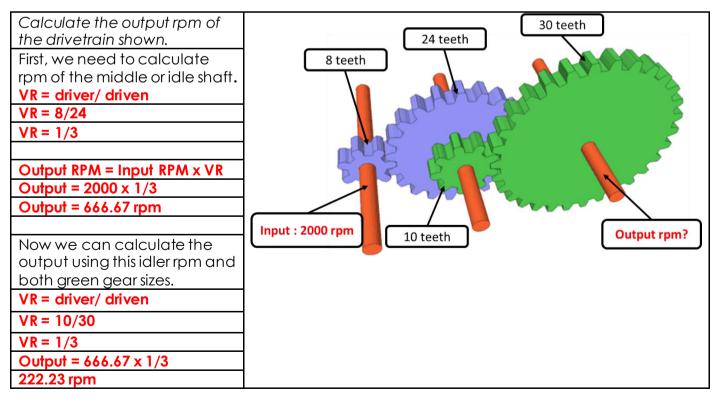
Advantages:	Disadvantages:
Cheap to manufacture	Difficult to cool electromagnet in rotor
Simple operating system	Brushes limit amount of poles that armature can have
uuuu olme	Brushes in contact with rotor cause sparking and electrical noise
	Brushes wear due to friction
	Brushes make and break connections resulting in friction
Activity 1.4	

Figure 0.2


Figure 0.2 shows the key features of a brushless DC motor. In the box below, place these features under advantages or disadvantages of a brushed DC motor.

Advantages:	Disadvantages:	
There are no brushes to wear	Expensive to manufacture	
High power density	Must contain a controller circuit	
Large number of electromagnets on stator gives precise control		
Easier to cool fixed electromagnets		
No sparking and less electrical noise		
Long life expectancy		

Activity 1.5


Based on your knowledge of power sources and motors, state one advantage and one disadvantage of each of the possible combinations below.

Activity 1.6

Activity 1.7

•	List two advantages and two disadvantages of leaf springs.
•	Advantages:
•	Leaf springs are cheap.
•	Leaf springs are strong
•	Leaf springs can carry heavy loads.
•	Disadvantages:
•	Leaf springs can be noisy in motion.
•	Ride comfort is limited with leaf springs in comparison to more modern methods.
•	List two advantages and two disadvantages of coil springs.
•	Advantages:
•	Coil springs also offer a higher range of movement.
•	Coil springs provide greater comfort.
•	
•	Disadvantages:
•	Coils springs are more expensive than leaf springs.
•	Coil springs are limited in the load they can carry.

www.almanahj.com

Lesson 2: Adapting to space vehicles

<u>Aim:</u>

This lesson aims to bridge the gap between motor vehicle design and space vehicle design. This lesson will build on prior knowledge of vehicle technologies and help you adapt this knowledge to design a space rover. On completion, you will understand the critical aspects of space rover design.

Teacher Learning Objectives: Learning objective refers to what you as a teacher will have taught the student by the end of the course. Teachers are to tick the box when the they have covered a learning objective.

- □ Recap on power sources and motor types
- \Box Explain the operation of steering mechanisms vs differential steering.
- \square Present sample rocker-bogie mechanisms while explaining how they operate

<u>Student Learning Outcomes:</u> Learning outcomes refer to what the student can expect from the course, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to:

- \Box Identify suitable motors and power sources for a space rover.
- Differentiate between steering mechanisms.
- Understand the operation of a rocker-bogie suspension system.
- □ Model a rocker-bogie mechanism.

Keywords	What are the keywords the students must learn? differential differential steering torgue 		
	 rack and pinion bevel gear rocker-bogie 		
Resources	What resources are required? textbooks projector calculator 		
Prior Knowledge	 Motor types used in vehicle design Leaf versus coil spring suspension Power sources 		

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

Торіс	1 1 Page		
WWV	V.211000001.C	Non-essential/Self Study	
Steering mechanisms	Pg. 32-33		
Rocker-Bogie suspension	Pg. 34-40		
Rocker-Bogie model	Pg. 41		

Possible Teaching Method(s) or Approach for this lesson

- Collaborative Teaching (student centred)
- Instructional / Demonstrative Teaching (teacher centred)
- Inquiry-based Teaching (student centred)
- Lecture Style Teaching (teacher centred)
- Coach Style Teaching (teacher centred)
- □ Facilitator Style Teaching (student centred)

Development [Phases or chunks of	Notes for differentiation:	Assessment
learning]:	Note: All lessons can be different	Opportunities:
Note: All lessons start with Phase 1, Lessons	depending on ability and	
can move back and forth between phases 2	success of previous lesson. Place	
and 3 as content is covered and then	additional notes or activities to	
students engage. All lessons must finish with	cater for differentiation where	
phase 4 to evaluate learning.	necessary through ought the lesson.	
Phase 1 of lesson (Connect)	1635011.	
<u>Starter</u>		Questioning.
Teacher to introduce students to the		
lesson aim.		
Teacher to place all student learning		
outcomes on the board and ensure		
student understanding of aims and		
outcomes.		
Recap on previous lesson to assess prior	nonchi com	
Recap on previous lesson to assess prior knowledge of motor types, suspension,	Ilallallj.CUII	
and drivetrains.	~	
 Teacher Tip: Teacher to set high expectations which inspire, motivate and challenge pupils. Phase 2 of lesson (Activate) Teacher to introduce all key words, discuss meaning and ensure understanding before progressing. Teacher to introduce some traditional steering mechanisms before comparing to differential steering. Teacher to introduce rocker-bogie suspension system. Ensure student understanding of all parts of the mechanism. Teacher to demonstrate how rocker-bogie allows vehicle to climb obstacles. Question students on limitations when climbing to ensure understanding. 		Questioning

Taachar ta damanstrata haw rackar may ba		
Teacher to demonstrate how rocker may be attached to chassis using a swivel. Use Fusion 360 model from teacher guide as		
additional 3D visual aid if required. Fusion link: <u>http://a360.co/2FBfHaE</u>		
Teacher to introduce students to 2 possible solutions of the issue identified in activity 2.4		
Students to explore QR codes and note differences in designs.		
<u>Teacher Tip:</u> Teacher to demonstrate good subject and curriculum knowledge		
Phase 3 of lesson (Engage and Demonstrate) Pose a problem to students, suggest a vehicle needs to turn in a tight circle to explore an unknown planet. In groups		
students should present ideas which method is best suited and why. Teacher should facilitate as students evaluate their decisions and decide the correct method.	nanahj.com	Written Activities 2.1-
Students to demonstrate understanding of activities 2.1-2.3 Teacher to facilitate as student's complete activities 2.1-2.3		2.3
Use group discussion to allow students to problem solve activity 2.4 Following discussion groups should present any issues they see with this design. Teacher to facilitate as students use information gathered to complete activity 2.4		Peer teaching Written Activity 2.4
Students to discuss both possible designs in their groups. Explore Fusion 360 models and videos. Note differences and record advantages and limitations. Use an "Each on teach one" approach to have groups show their understanding of each design. This process should allow all students to fully understand both designs.		Peer teaching Written Activities 2.5- 2.6

Teacher to facilitate as student's complete activities 2.5-2.6 individually. All students must now demonstrate their understanding by modelling a rocker bogie mechanism in activity 2.7	Modelling Activity 2.7
<u>Teacher Tip:</u> Use groupwork as appropriate, get to know your class and organise groups to support mixed ability's.	
Phase 4 Plenary (Consolidate) Teacher to facilitate as students evaluate learning.	Oral Assessment
Question pupils on what they have learned. Have learning outcomes been met? Has the lesson aim been achieved? All students must complete student evaluation Students to complete activities 2.7 and present in next lesson.	Student evaluation
Teacher to introduce Unit 2 sustainability manafi.com for self-study, Students should keep in mind while studying how sustainability can be incorporated into a space rover design.	

Answer Key/ Resources

Activity 2.1

• What type of steering mechanism would be most suitable for a space rover that is designed to navigate Mars? Give two reasons for your choice.

• A skid steer or differential steering system is the most suitable mechanism for a space rover. This system is most suitable for a number of reasons:

• -Skid steer allows vehicles to rotate on the spot when needed in comparison to the wide turning circle of traditional steering mechanisms.

-Differential steering allows all-wheel drive to be easily incorporated.

• -Differential steering does not contain as many moving parts such as a rack and pinion which may become damaged or worn on rough terrain.

• -Containing less parts is an advantage as these parts cant be easily sourced on Mars as they would on Earth.

Activity 2.2

Review motor types and power sources from Lesson 1. Which is the most suitable power source and motor system for a space rover that will be used to explore Mars? Give at least two reasons for your choice.
 A battery bank combined with brushless DC motors is the most suitable system for a

space rover.

• Batteries can be recharged using renewable sources such as solar panels.

Brushless Dc motors are a good option as they provide high power density.

• Brushless DC motors also have a long life expectancy which is important on mars due to a lack of resources.

• The lack of brushes means spare brushes are not needed.

Activity 2.3

List two vehicles that use the steering mechanisms below.

Rack and pinion	Differential (skid) steering
Car	Tank
Dunne Buggy	Track Digger

Activity 2.4

What issue would attaching both sides on individual swivels (as shown above) cause?
Attaching the rockers with single swivels would mean there is nothing to stop the chassis rotating around 360 degrees. This would result in the chassis constantly spinning as the rover drives.

Activity 2.5

- State one advantage and one disadvantage of using one fixed side method to attach rockers to the chassis.
- Advantages:
- -This method is its simple to construct.
- Does not have complicate moving parts
- Disadvantages:

• -Chassis remains parallel to the fixed side and doesn't remain at an average pitch angle depending when travelling over uneven terrain.

<u>www.almanahi.com</u>

Activity 2.6

- State one advantage and one disadvantage of using differential gears to connect rockers.
- Advantages:
- -Chassis remains at an average pitch angle when travelling over uneven terrain.
- -Gives more even weight distribution of all wheels.
- Disadvantages:
- -More complicated to construct
- Contains more moving parts

Activity 2.7

Unit 3: Mars Electronics

Lesson 1: Essentials of Arduino

<u> Aim:</u>

This lesson aims to introduce you to Arduino and explains the basic features of Arduino IDE software. The session starts with a brief introduction to Arduino, and the Arduino board, introducing its various ports and hardware components. This is followed by an explanation of the Arduino IDE software and its key features. A step by step procedure on how to upload a test sketch to the Arduino board will be the final task in this lesson.

<u>Student Learning Outcomes:</u> Learning outcomes refer to what the student can expect from the lesson, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to:

- Explain the role of the Arduino microcontroller in electronics.
- \Box Identify the main parts of the Arduino board.
- \Box Recognise the layout of the Arduino IDE programming interface.
- Explain the Arduino programming structure.
- Explain how to control the LCD screen. 1201
- Explain how to use Arduino's serial monitor.
- □ Configure the Arduino IDE software to work with the Arduino board.
- \Box Use pseudocode and flowcharts to understand how a program works.

Keywords	What are the keywords the students must learn?	
	 microcontroller 	
	Arduino board	
	• pins	
	 power supply 	
	• GND	
	• IDE	
	 sketch 	
	 serial monitor 	
	• LCD	
	 variables 	
Resources	What resources are required?	
	 textbooks 	
	 projector 	
	 calculator 	
	Arduino board	
Prior Knowledge	 Use breadboards for building electronic 	
	circuits.	
	 Identify the basic electronic components. 	

Possible Teaching Method(s) or Approach for this lesson

- Collaborative Teaching (student centred)
- Instructional / Demonstrative Teaching (teacher centred)
- Inquiry-based Teaching (student centred)
- □ Lecture Style Teaching (teacher centred)
- Coach Style Teaching (teacher centred)
- □ Facilitator Style Teaching (student centred)

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

Торіс	Page	
	Essential	Non-essential/Self Study
What is Arduino?	Pg. 61-65	
Arduino IDE software	Pg. 66-67	
Arduino code structure	Pg. 68	
Example – On-board LED	Pg. 69-70	
Arduino code syntax	Pg. 71-72	
Arduino- LCD and Serial monitor		Pg. 72-81
Pseudocode and flowcharts		Pg. 82-83
Arduino code using		Pg.84-85
pseudocode and flowcharts		

Notes for differentiation:

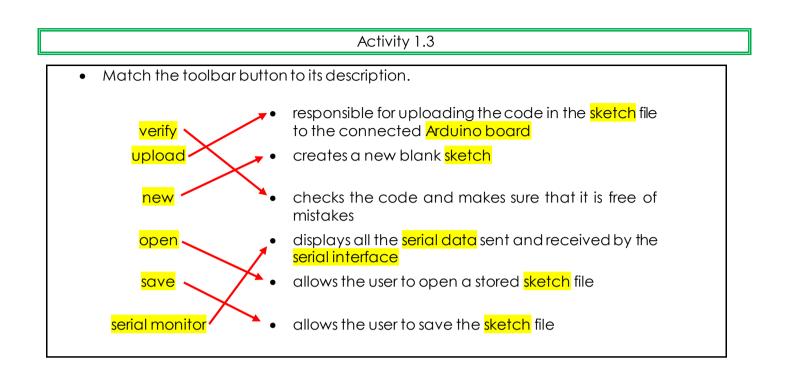
All lessons can be different depending on ability and success of previous lesson. Place additional notes or activities to cater for differentiation where necessary throughout the lesson.

Development [Phases or chunks of learning]: Note: All lessons start with Phase 1, Lessons can move back and forth between phases 2 and 3 as content is covered and then students engage. All lessons must finish with phase 4 to evaluate learning.	Assessment Opportunities:
Phase 1 of lesson (Connect)	
Starter Teacher to introduce students to the lesson aim. Teacher to place all student learning outcomes on the board and ensure student understanding of aims and outcomes. Discuss prior knowledge of breadboards and basic electronic components. Show motivational videos / models to outline the end goal of the term.	Questioning
Teacher Tip: Teacher to set high expectations which inspire, motivate and challenge pupils.	
Phase 2 of lesson (Activate) Teacher to introduce all key words, discuss meaning and ensure understanding before progressing.	om
Teacher to introduce the role of Arduino microcontroller in electronics, while students research the topic.	Questioning
Question students on what aspects are new to them when compared to prior knowledge discussion.	
Teacher to guide the class discussion about parts of the Arduino board and the IDE software layout.	
Teacher to introduce the Arduino code structure and allow students to explore their first Arduino program.	
Teacher to monitor the students' progress throughout the lesson by using the different assessment opportunities.	
<u>Teacher Tip:</u> Teacher to demonstrate good subject and curriculum knowledge	
Phase 3 of lesson (Engage and Demonstrate)	
<u>Task 1:</u> Ask students to find a partner and make a mind map about the advantages, disadvantages, and uses of the Arduino microcontroller. Students to complete Activity 1.1.	Mind Map

Teacher to facilitate as peer teaching takes place.	Peer teaching
Task 2: Divide students into groups and assign each group an Arduino board. Allow students to label the Arduino board as a group. After they finish students will complete activity 1.2.	Written Activities 1.1-1.3
Task 3: Students to be given an IDE software layout, each group to fill out one section. The answers will be given through a class discussion.	
Students demonstrate learning by completing activity 1.3.	
Task 4: Students to upload and test their first On-board LED program individually.	
Students demonstrate learning by completing activity 1.4 in groups.	Written Activity 1.4-1.5
Task 5: Students to study the Arduino code syntax and complete activity 1.5.	
Teacher to facilitate as collaborative learning takes place.	
Students demonstrate learning by completing all activities (1.1-1.5).	om
<u>Teacher Tip:</u> Use groupwork as appropriate, get to know your class and organise groups to support mixed ability's.	
Phase 4 Plenary (Consolidate) Teacher to facilitate as students evaluate learning. Question pupils on what they have learnt. Have learning outcomes been met? Has the lesson aim been achieved?	Oral Assessment Student evaluation
All students must complete the final activity and the student evaluation/reflection.	
Students to complete activities 1.1-1.5 and finish for homework if not completed.	
This lesson should be conducted in one lesson (1 period – 45min)	

Answer Key/ Resources

QR code links:		
Page	Торіс	Link
63	Various Arduino projects	https://www.youtube.com/watch?v=B7dtdBgOHWM
71	Fritzing	http://fritzing.org/download/?donation=0
71	TinkerCad	https://www.tinkercad.com/#/

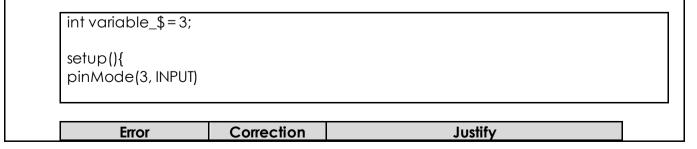

Activity 1.1

Take out your Arduino board and place it in front of you. Can you identify the board model?
 The board is an Arduino Leonardo model.

Activity 1.2

ww.almanah_l.com

- Identify the four power socket pins and write down their names.
 - 1.3.3V pin
 - 2.5V
 - 3. GND pins
 - 4. VIN pins
- How many analogue pins are there in the Analog IN socket? Name them. 6 analogue pins. A0, A1, A2, A3, A4, A5.
- How many digital pins are there in the digital socket? 14 digital pins.


WWW.a Activity 142 h1. COM

• Check the status of the 'LLED'. What do you observe?

The LED will turn on and off (blink) with a delay of 1 second.

Activity 1.5

- Use the information provided in **Error! Reference source not found.** to answer the following questions:
- a. Find the syntax errors in the lines of code below, and then correct them.

int variable_\$=3;	int variable= 3;	the variable name must be meaningful, include no spaces or	
pinMode(3, INPUT)	pinMode(3, INPUT);	special characters semicolon is used to end a statement	
setup(){ pinMode(3, INPUT)	setup(){ pinMode(3, INPUT) }	unbalanced braces will result in a compiler error	

b. Mark the lines below as a comment using two different methods.

Blink

Turns on an LED on for one second, then off for one second, repeatedly.

Method 1:

, Blink

Turns on an LED on for one second, then off for one second, repeatedly.

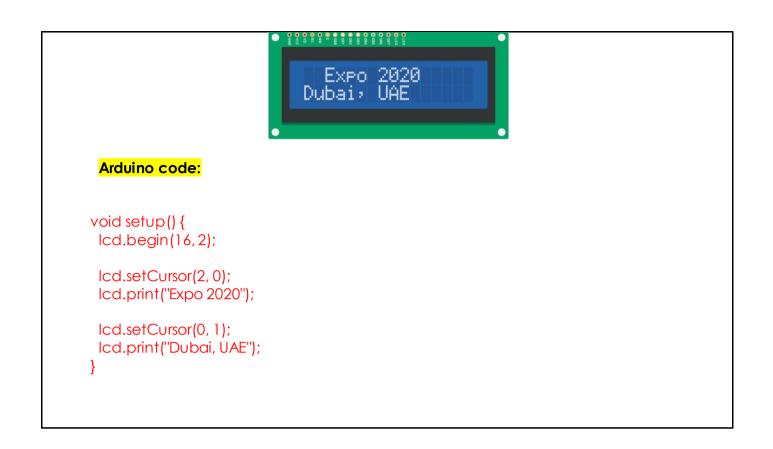
Method 2:

//Blink

//Turns on an LED on for one second, then off for one second, repeatedly.

c. Declare the variables below.

declare 'y' as an integer, and set its initial value to 0


int y=0;

declare 'age' as a character

charage;

Activity 1.6

• Write the Arduino code to print the following message on the LCD screen:

Activity 1.7
 Modify the Arduino example to print your name. Take a picture of the LCD screen and paste it below.
Arduino code:
#include <liquidcrystal.h></liquidcrystal.h>
// initialize the library with the numbers of the interface pins LiquidCrystal Icd(8, 9, 4, 5, 6, 7);
<pre>void setup() { // set up the LCD's number of columns and rows: lcd.begin(16,2); // Print a message to the LCD. lcd.print("NAME"); }</pre>
<pre>void loop() { // set the cursor to column 0, line 1 // (note: line 1 is the second row, since counting begins with 0): lcd.setCursor(0, 1); // print the number of seconds since reset: lcd.print(millis() / 1000); }</pre>

Activity 1.8

• Try pressing the Arduino's Reset button a few times. What happens?

Whenever the reset button is pressed the message is printed once on the serial monitor.

• Now, write the print function inside the loop() function. Verify and upload the code and then observe what happens.

The message will be displayed on the serial monitor repeatedly.

www.almanahj.com

Activity 1.9

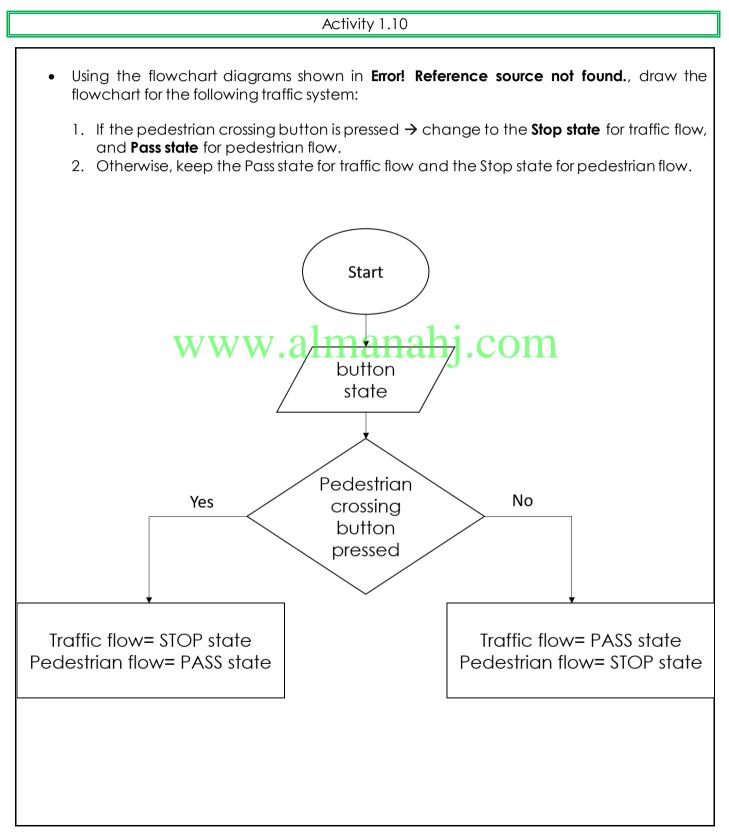
• Write the proper statements for the following statements:

1. Define an integer variable, name it 'count' and give it a value of zero. int count=0;

Print out an explanation message.
 Serial.println("Counting integer numbers starting from 0");

```
    Display the current count.
    Serial.print("Count = ");
    Serial.println(count);
```

4. Implement a procedure to increase the counts. count=count +1;


5. Add 100 milliseconds of delay time. delay(100);

6. Which one of those steps needs to be done only once?

The counterinitialisation and the explanation message.

7. Which one of those steps needs to be run continuously in a loop?

Updating the counter and displaying its value.

Activity 1.11

• What is a flowchart? Why do I need it? A flowchart is a visual representation of the sequence of the process. It shows how the code is executed. It also helps you identify the different elements of the process and understand how the different steps are linked together.

• What is a pseudocode? Why do I need it? Pseudocode is a method to communicate the design problem using English-like statements. It is used to outline the structure of the code, making the process of writing the actual code much easier.

Final activity

- Write an Arduino program to calculate the voltage value in Ohm's law, knowing that the current is 2 mA, and the resistance is 100 Ω.
 Hint: Ohm's law V = I×R
 - 1. Define the variables.

float current=0.002; int resistance=100; float voltage;

2. Print out an explanation message (comment).

Serial.println("Calculating the voltage using Ohm's law");

3. Implement a procedure to calculate the voltage.

voltage=current*resistance;

4. Print out the voltage value on the serial monitor.

Serial.println("Voltage is:");
Serial.println(voltage);

```
5. Print out the voltage value on the LCD.
     void setup() {
       Icd.begin(16,2);
       lcd.setCursor(0, 0);
       lcd.print("Voltage is:");
       lcd.setCursor(0, 1);
      lcd.print(voltage);
     }
      6. Write the complete Arduino code and run the program.
#include <LiquidCrystal.h>
float current=0.002:
int resistance=100;
float voltage;
// initialize the library with the numbers of the interface pins
LiquidCrystal Icd (8, 9, 4, 5, 6, 7);
                     www.almanahj.com
void setup() {
Serial.begin(9600);
Serial.println("Calculating the voltage using Ohm's law");
}
void loop() {
voltage=current*resistance;
Serial.println("Voltage is:");
Serial.println(voltage);
delay(1000);
 // set up the LCD's number of columns and rows:
lcd.begin(16, 2);
lcd.setCursor(0, 0);
lcd.print("Voltage is:");
lcd.setCursor(0, 1);
lcd.print(voltage);
delay(1000);
}
```

Lesson 2: Analogue and digital signals

<u> Aim:</u>

This lesson aims to introduce you to the world of signals. You will learn how to read the digital signal on Arduino using digital input statements. The content explains in detail the procedure for generating digital signals and reading analogue signals. It also describes how to use pulse width modulation (PWM) to generate analogue signals for simple electrical devices.

<u>Student Learning Outcomes:</u> Learning outcomes refer to what the student can expect from the lesson, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to:

- Differentiate between digital and analogue signals.
- □ Identify how to read digital signals in Arduino. an1. COM
- Interpret how to generate a digital signal.
- $\hfill\square$ Identify how to read analogue signals in Arduino.
- \Box Describe the function of PWM signals in electric circuits.

Keywords	 What are the keywords the students must learn? digital signal floating state analogue signal PW M 	
	time periodfrequencyduty cycle	
Resources	 What resources are required? textbooks projector calculator Arduino board 	
Prior Knowledge	 Arauno boara Identify the fundamentals of Arduino programming. Recognise the structure of LEDs, push-buttons, and potentiometers. Use breadboards for building electronic circuits. Identify the basic electronic components. 	

Possible Teaching Method(s) or Approach for this lesson

- Collaborative Teaching (student centred)
- Instructional / Demonstrative Teaching (teacher centred) COIII
- □ Inquiry-based Teaching (student centred)
- □ Lecture Style Teaching (teacher centred)
- Coach Style Teaching (teacher centred)
- □ Facilitator Style Teaching (student centred)

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

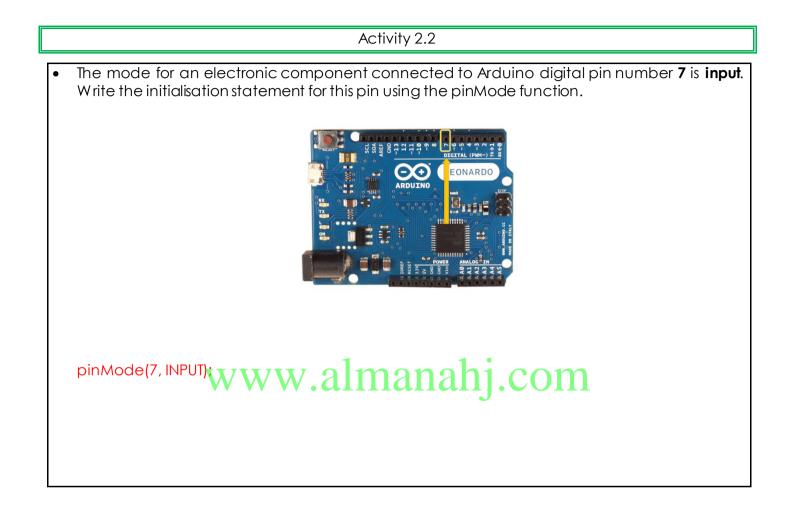
Торіс	Page		
	Essential	Non-essential/Self Study	
What are signals?	Pg. 90-92		
Getting started	Pg. 93		
Digital input		Pg. 94	
Read the digital input		Pg. 95	
Digital input-practical work		Pg. 96-98	
Digital output	Pg. 99		
Digital output- practical work	Pg. 100-102		
Analogue input		Pg.103	
Analogue input-practical work		Pg.104-107	
Analogue output	Pg. 108-109		
Analogue output-practical work	Pg. 109- 112		

Notes for differentiation:

All lessons can be different depending on ability and success of previous lesson. Place additional notes or activities to cater for differentiation where necessary throughout the lesson.

Development [Phases or chunks of learning]: Note: All lessons start with Phase 1, Lessons can move back and forth between phases 2 and 3 as content is covered and then students engage. All lessons must finish with phase 4 to evaluate learning.	<u>Assessment Opportunities:</u>
Phase 1 of lesson (Connect)StarterTeacher to introduce students to the lesson aim.Teacher to place all student learning outcomes on the boardand ensure student understanding of aims and outcomes.Discuss prior knowledge of Arduino programming and basicelectronic components.Show motivational videos / models to outline the end goal of theterm.	Questioning.
Image: Teacher Tip: Teacher to set high expectations which inspire, motivate and challenge pupils. Phase 2 of lesson (Activate) Teacher to introduce all key words, discuss meaning and ensure understanding before progressing. Teacher to introduce the topic of digital and analogue signals, while students (think-pair-share) their thoughts. Question students on what aspects are new to them when compared to prior knowledge discussion. Teacher to introduce Arduino functions while students explore these functions through understanding before progressing.	OM Questioning / Mind Map
these functions through various activities. Teacher to monitor the students' progress throughout the lesson by using the different assessment opportunities. <u>Teacher Tip:</u> Teacher to demonstrate good subject and curriculum knowledge. <u>Phase 3 of lesson (Engage and Demonstrate)</u> <u>Task 1:</u> Students to study the first most important Arduino function (digitalWrite). They will go through digital output-practical work to explore and test this function as groups.	Written Activity 2.4-2.5

Students demonstrate learning by completing activity 2.4-2.5.	
Task 2: Students to study the second most important Arduino function (analogWrite). They will go through analogue output- practical work to explore and test this function as groups.	Peer teaching Written Activity 2.8
Students demonstrate learning by completing activity 2.8.	
<u>Task 3:</u>	
Divide students into two groups assigning each group an Arduino function. Use an "Each one teach one" approach to have groups show their understanding and improve other groups understanding of Arduino functions.	
Teacher to facilitate as peer teaching takes place.	
Teacher Tip: Use groupwork as appropriate, get to know your class and organise groups to support mixed ability's.	
Phase 4 Plenary (Consolidate) Teacher to facilitate as students evaluate learning. Question pupils on what they have learned. Have learning outcomes been met? Has the lesson aim been achieved?	
All students must complete the student evaluation/reflection.	Oral Assessment
Students to complete activities 2.4,2.5,2.8 and finish them for	
homework if not completed.	Student evaluation
This lesson should be conducted in one lesson (1 period – 45min)	


Answer Key/ Resources

	QR code links:		
Page	Торіс	Link	
91	Differences between analogue and digital signals	http://qrs.ly/c3690tu	
96	Pull up resistor tutorial	https://www.youtube.com/watch?v=wxjerCHCEMg	
108	PW M signals	https://www.youtube.com/watch?v=B_Ysdv1xRbA	

Using the figure their values in t	Activ below, find the correspondir ne table.		rs, and then reco
vww.almanah/j.com -1			
	Analogue signal	Digital signal]
	a = 0.5	A = 1	
	b = 0.7	B = 1	1
	- 00	C = 0	1
	c = -0.2	$\mathbf{C} = 0$	
	d = -1	D = 0	-

Using the recorded values, what is the difference between the analogue and digital signals?

Digital signals have a finite number of values, either 0 or 1. Analogue signals have an infinite number of values.

Activity 2.3

• Write a code that prints the status of a push-button on the serial monitor.

When the push-button is pressed, the serial monitor should display the value 1. When the pushbutton is released, the serial monitor should display the value 0. Follow the instructions below.

- 1. Open the Arduino IDE software, and then click file \rightarrow new.
- 2. In the setup() function, define pin 7 (push-button) as an INPUT.
- 3. In the loop () function, print a sentence on the serial monitor to display the signal value using the function \rightarrow Serial.println();.
- 4. Wait 500 milliseconds before the next loop using the function, delay(500); .
- 5. Verify and upload the code to read the value from pin 7.

Arduino code:

void setup()

Serial.begin(9600); while (!Serial); pinMode(7,INPUT);

void loop()

}

// print a sentence on the serial monitor Serial.print("The value of the signal is = "); Serial.println(digitalRead(7)); // print the signal value delay(500); // wait for 500 milliseconds before the next loop

Activity 2.4

 1. Write a code that defines a digital component as an output pin, and write it within the setup() function.

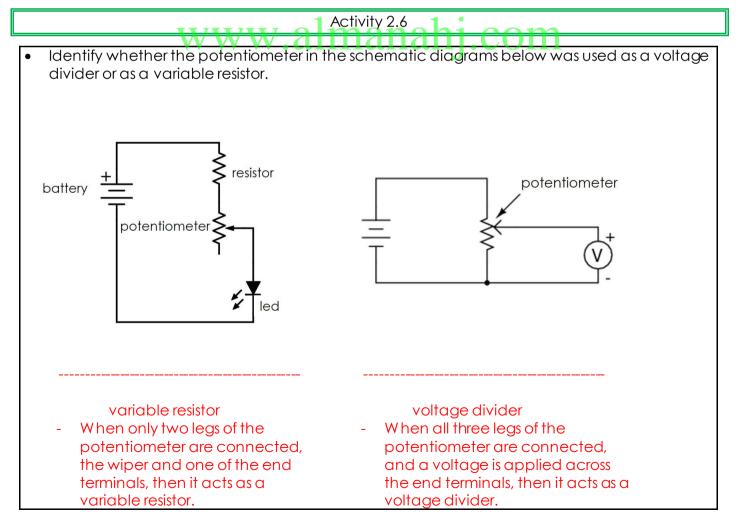
 Void setup(){

 Serial.begin(9600);

 pinMode(7,OUTPUT);

 }

 2. Where do you put the command to turn the digital components ON and OFF for a specific amount of time?


 In the loop() function, using the delay command.

Activity 2.5

• Write a full code to flash the LED ON and OFF. Follow the instructions below.

1. Turn the LED ON.

 Apply a delay of 1 second. Turn the LED OFF.
4. Apply a delay of 1 second.
5. Repeatagain. Arduino code:
Alduno Code.
<pre>void setup() { Serial.begin(9600); while (!Serial); pinMode(7,OUTPUT); }</pre>
void loop() { digitalWrite(7.HIGH); delay(1000); digitalWrite(7,LOW); // print the signal value delay(1000); // wait for 1000 milliseconds before the next loop

Activity 2.7

• Write a code to read the value of the potentiometer and display it on the serial monitor.
1. Write a statement to define and initialise the variable x as an integer.
int x=0;
2. Write a statement to display the value of variable x on the serial monitor.
Serial.println("The potentiometer value is:"); Serial.println(x);
3. Write a statement to execute a delay of 100 milliseconds.
delay(100);
4. Finalise your code and run it on your Arduino. WWW.almanahj.com

Activity 2.8

• Write a code to manipulate the brightness of the LED as detailed below.

- 1. Define a variable to store the PWM value.
- 2. Initialise an output pin.
- 3. Generate the PWM signal using the PWM value.
- 4. Apply a delay to observe the brightness.
- 5. Increase the PWM value by 10.
- 6. Repeat from step 3.

Arduino code:

int Brightness = 0;

void setup() {
pinMode(9, OUTPUT); // Define the pin #9 as an output pin.

void loop() { analogWrite(9, Brightness); // Generate the PWM signal at pin #9 delay(100); // apply a delay of 100 milliseconds	
Brightness = Brightness + 10; // increase the Brightness value by 10	
}	

ſ

Final activity			
Hint: The 1. pote 2. int L 3. int p 4. voic 5. pin/ 6. pin/ 7. } 8. voic 9. int v 10. if(pu 11. digit 12. delc 13. digit 14. } 15. else	errors in the Arduino code below. Then, c errors in the Arduino code below. Then, c entiometer=4; ED = 14; bushbutton=3; I setup() { Mode(potentiometer, OUTPUT); node(pushbutton, INTPUT); mode(pushbutton, INTPUT); WWW.alman I loop() { al = analogRead(potentiometer); ushbutton ==LOW){ //if sensor value is one talWrite(LED,HIGH) ay(val); //wait for 2 seconds talwrite(LED,LOW); {	ahj.com	
Line No.	No. Syntax error Correction		
1	potentiometer=4;	int potentiometer=4;	
2 int LED =14; 2 int LED =14; (pins 0 and 1 are reserved for T: and Rx)*/		/*digital I/O pins: 2-13 (pins 0 and 1 are reserved for Tx	

5	pinMode(potentiometer, OUTPUT);	pinMode(LED, OUTPUT); /*the potentiometer is an analogue electronic device, hence, it doesn't need to be defined using the pinMode function. Unlike the push- button and the LED, where both of them are digital components and their pinMode must be defined.*/ /*if you were to define the potentiometer, then it's an input device not an output*/
6	pinmode(pushbutton, INTPUT);	pinMode(pushbutton, INPUT);
10	<pre>//if sensor value is one if(push-button ==LOW){</pre>	//if sensor value is one if(pushbutton ==HIGH){
11	digitalWrite(LED,HIGH)	digitalWrite(LED,HIGH);
12	//wait for 2 seconds delay(val);	//wait for 2 seconds delay(2000);
13	digitalwrite(LED,LOW);	digitalWrite(LED,LOW);
16	digitalWrite(LED,low);	digitalWrite(LED,LOW);
18	curly bracket to close the void loop() function is missing Void loop(){ //commands } → the closing bracket is missing	ahj.com

Unit 3: Mars Electronics

Lesson 3: Space rover electronics

<u>Aim:</u>

The aim of this lesson is to set up and program a wireless space rover using various electronic components and an Arduino microcontroller. The space rover will be controlled using a mobile application and Bluetooth module. This lesson introduces a selection control mechanism called a switch statement. This statement will be used in programming the Arduino microcontroller. The electronic circuit will be programmed using various commands from the Arduino Bluetooth mobile application. Once the Bluetooth module communicates with the mobile application, you will be able to control the functions of the space rover.

<u>Student Learning Outcomes:</u> Learning outcomes refer to what the student can expect from the lesson, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to:

- \Box Identify the function of a motor driver.
- \Box Compare between a SPST switch and a DPDT switch.
- Develop and evaluate an Arduino code using a switch statement.
- Assemble electronic components to build a complete circuit of a space rover.
- Use a Bluetooth module between a mobile application and Arduino.

Keywords	 What are the keywords the students must learn? L298N motor Driver floating state analogue signal PW M time period
	frequencyduty cycle
Resources	 What resources are required? textbooks projector calculator Arduino board
Prior Knowledge	 Able to generate digital signals using Arduino. Understand the function of DC motors. Recognise the mechanism of a rocker-bogie. Differentiate between steering mechanisms. Use breadboards for building electronic circuits.

Possible Teaching Method(s) or Approach for this lesson

- Collaborative Teaching (student centred)
- □ Instructional / Demonstrative Teaching (teacher centred)
- Inquiry-based Teaching (student centred) 11.com
- Lecture Style Teaching (teacher centred)
- Coach Style Teaching (teacher centred)
- □ Facilitator Style Teaching (student centred)

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

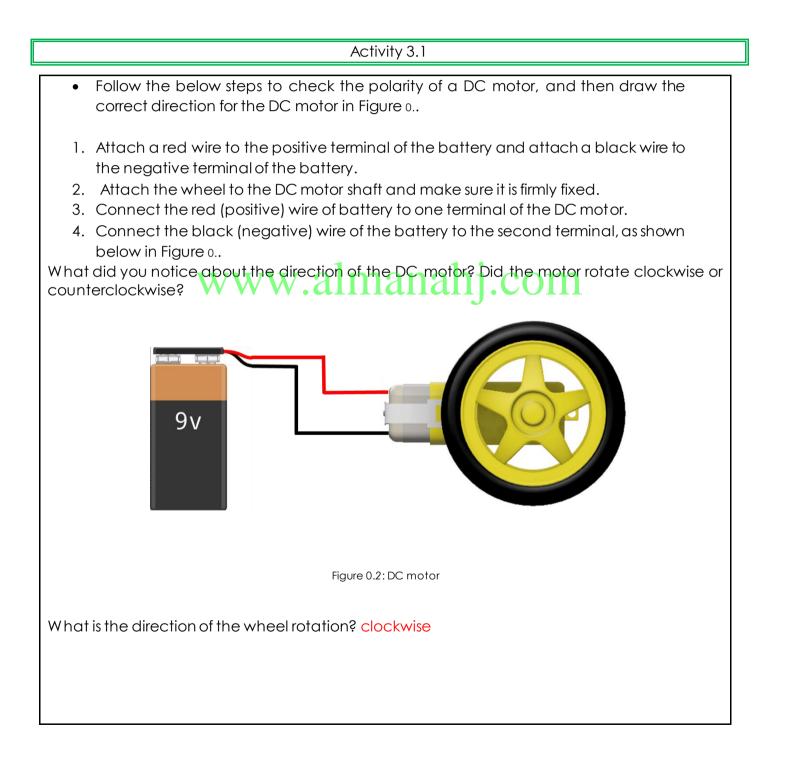
Торіс	Page	
	Essential	Non-essential/Self Study
Space rover electronics	Pg. 118	
Types of motors	Pg. 118	
DC motor-practical work	Pg.119-122	
Controlling a DC motor		Pg.123
Motor driver	Pg. 124-125	
Step 1: Connecting the DC motors	Pg. 126-128	
to the motor driver.		
Step 2: Using Arduino to control the	Pg. 129-133	Pg.134
rotation and direction of the DC		
motors.		
Bluetooth module-Wireless	Pg. 135	
communication		
Bluetooth technology	Pg. 135	

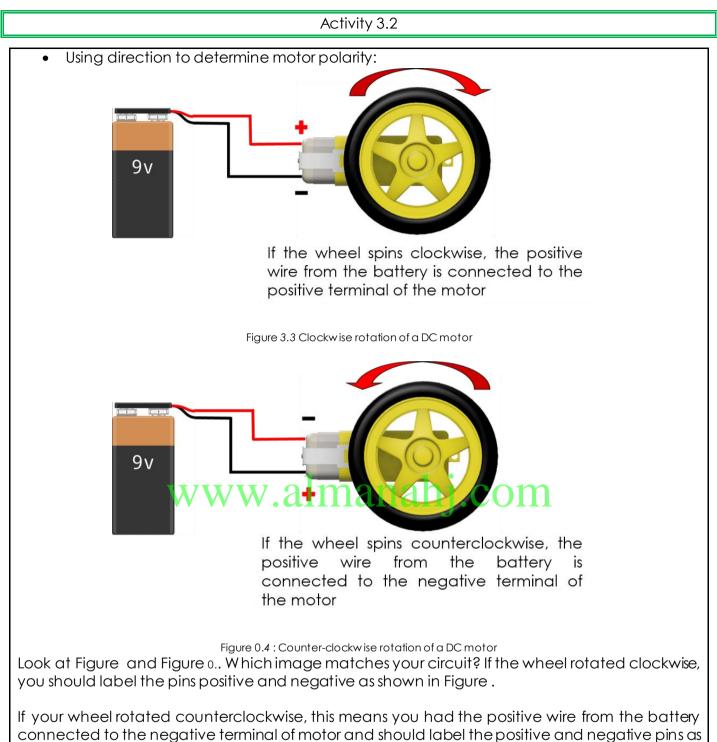
How does the Bluetooth module communicate with Arduino?	Pg. 136	
Step 3: Connecting the Bluetooth module to the circuit	Pg. 137-138	
Switch statement-Finalising the	Pg. 139-141	
code Writing the code	Pg. 142	
Testing your space rover	Pg. 143	
Switches		Pg. 144
Types of switches		Pg. 144
Step 4: Connecting SPST and DPST	Pg.146-148	
switches to the space rover circuit		
Creative problem-solving		Pg.149-156
(Expansion of circuit functions)		
Obstacle detector		Pg. 157-162

Notes for differentiation:

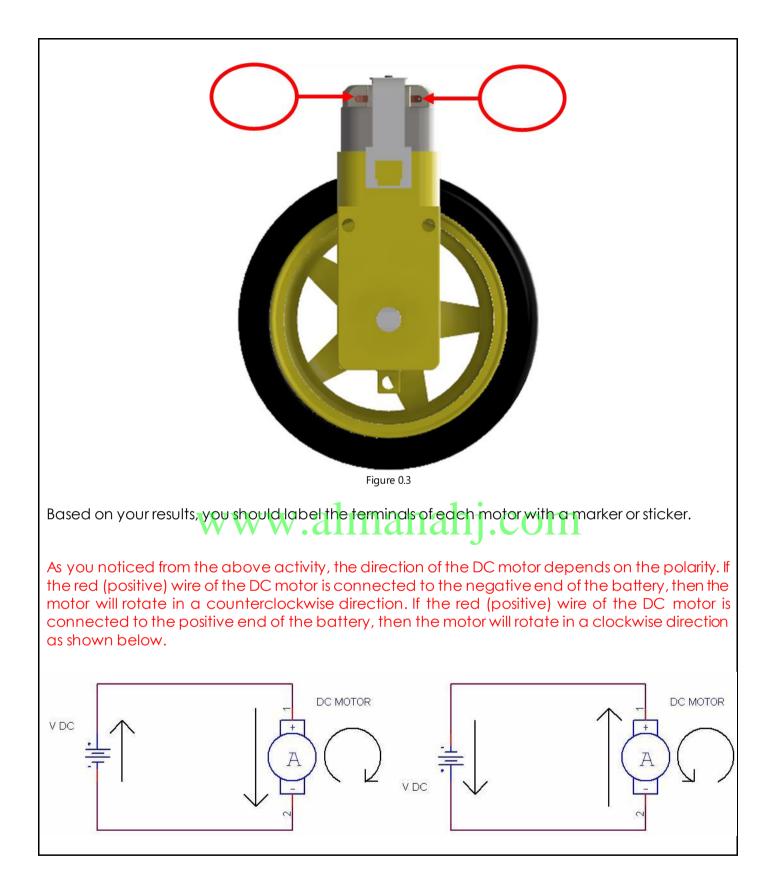
All lessons can be different depending on ability and success of previous lesson. Place additional notes or activities to cater for differentiation where necessary throughout the lesson.

Development [Phases or chunks of learning]:	Assessment Opportunities:
Note: All lessons start with Phase 1, Lessons can move back and forth between phases 2 and 3 as content is covered and then students engage. All lessons must finish with phase 4 to evaluate learning.	om
Phase 1 of lesson (Connect)StarterTeacher to introduce students to the lesson aim.Teacher to place all student learning outcomes on the boardand ensure student understanding of aims and outcomes.Discuss prior knowledge of DC motors and rocker-bogiemechanisms.Show motivational videos / models to outline the end goal ofthe term.	Questioning.
Teacher Tip:Teacher to set high expectations which inspire, motivate and challenge pupils.Phase 2 of lesson (Activate) Teacher to introduce all key words, discuss meaning and ensure	
Teacher to introduce students to the new electronic components that will be used to complete the space rover project. Teacher must emphasise the importance of gaining knowledge about these components in order to complete and test the final electronic circuit.	Questioning / Mind Map


Question students on what aspects are new to them when compared to prior knowledge discussion.	
Teacher to go through the function of DC motors and allow students to practically test them.	
Teacher to introduce the topic of motor drivers while students explore its use and function. Teacher to explain the use of wireless communication and question students on how the Bluetooth module falls under this category.	
Teacher to introduce switch case statements and students apply what they have learnt through various activities.	
<u>Teacher Tip:</u> Teacher to demonstrate good subject and curriculum knowledge.	
Phase 3 of lesson (Engage and Demonstrate)	
Task 1: In groups students will go through DC motor-practical work.	Peer teaching
Students demonstrate learning by completing activities 3, 1-3, 2.	Written Activities 3.1-3.2
Task 2: WWW.almanan.c	om
Task 2:WWW.aligned and aligned and aligne	Peer teaching
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor	COM Peer teaching
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building	OM Peer teaching
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit.	Peer teaching
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit. <u>Task 3:</u> Students will complete step 2: Using Arduino to control the	Peer teaching
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit. <u>Task 3:</u> Students will complete step 2: Using Arduino to control the direction and rotation of the DC motors. Students will upload and analyse the codes for both direction and	Peer teaching Written Activity 3.3-3.5
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit. <u>Task 3:</u> Students will complete step 2: Using Arduino to control the direction and rotation of the DC motors. Students will upload and analyse the codes for both direction and rotation.	
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit. <u>Task 3:</u> Students will complete step 2: Using Arduino to control the direction and rotation of the DC motors. Students will upload and analyse the codes for both direction and rotation. Students demonstrate learning by completing activities 3.3-3.5.	Written Activity 3.3-3.5
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit. <u>Task 3:</u> Students will complete step 2: Using Arduino to control the direction and rotation of the DC motors. Students will upload and analyse the codes for both direction and rotation. Students demonstrate learning by completing activities 3.3-3.5. <u>Task 4:</u>	
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit. <u>Task 3:</u> Students will complete step 2: Using Arduino to control the direction and rotation of the DC motors. Students will upload and analyse the codes for both direction and rotation. Students demonstrate learning by completing activities 3.3-3.5. <u>Task 4:</u> Students will connect the Bluetooth module to the circuit. Students demonstrate learning by completing step 3 of building	Written Activity 3.3-3.5
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit. <u>Task 3:</u> Students will complete step 2: Using Arduino to control the direction and rotation of the DC motors. Students will upload and analyse the codes for both direction and rotation. Students demonstrate learning by completing activities 3.3-3.5. <u>Task 4:</u> Students will connect the Bluetooth module to the circuit. Students demonstrate learning by completing step 3 of building the circuit.	Written Activity 3.3-3.5
Students will use the motor driver module to control the DC motor. They will explore the motor driver parts and connect the DC motor to the motor driver. Students demonstrate learning by completing step 1 of building the circuit. <u>Task 3:</u> Students will complete step 2: Using Arduino to control the direction and rotation of the DC motors. Students will upload and analyse the codes for both direction and rotation. Students demonstrate learning by completing activities 3.3-3.5. <u>Task 4:</u> Students will connect the Bluetooth module to the circuit. Students demonstrate learning by completing step 3 of building the circuit. <u>Task 5:</u> Students will find a partner and start writing the complete code	Written Activity 3.3-3.5


Students demonstrate learning by completing activities 3.7-3.8.	
Task 6:	Written Activity 3.7-3.8
Students need to follow the steps on page 143 to test the function of the electronic circuit.	
Teacher to facilitate as collaborative learning takes place. <u>Teacher Tip:</u> Use groupwork as appropriate, get to know your class and	
organise groups to support mixed ability's.	
Phase 4 Plenary (Consolidate)	
Teacher to facilitate as students evaluate learning. Question pupils on what they have learned. Have learning	
outcomes been met? Has the lesson aim been achieved?	Oral Assessment
All students must complete the student evaluation/reflection. Students to complete all the activities and finish in their free time if not completed.	Student evaluation
This lesson should be conducted in one double lesson (2 periods – 90min)	

www.almanahj.com


Answer Key/ Resources

	QR code links:		
Page	Торіс	Link	
125	How to control DC motor with L298N driver and Arduino.	https://www.youtube.com/watch?v=dyZolgNOomk	
143	Arduino Bluetooth RC car	http://qrs.ly/gy6akrw	

shown in Figure o..

Analyse the code in Figure 3.10 and document what have you noticed about the direction of the DC motor. Note: If the motor does not rotate in the required direction, reverse the connections on the motor driver to correct the rotation. For example, switch the wires entering pins 1 and 2 for motor A or 13 and 14 for motor B. Since the value for IN1 is HIGH, the value for IN2 is LOW, and the enable pin is given a value, the

motor rotates in a clockwise direction.

```
Activity 3.4
     Modify the code in Error! Reference source not found. to rotate the DC motors in the
      opposite direction.
Arduino code:
//speed of motors between 0 and 255, if you like you can change it
int pwm speedA = 255;
int pwm speedB = 240;
                  www.almanahj.com
void setup() {
Serial1.begin(9600);
//pins for motor controller
pinMode(11, OUTPUT);
pinMode(10, OUTPUT);
pinMode(9, OUTPUT);
pinMode(6, OUTPUT);
pinMode(5, OUTPUT);
pinMode(3, OUTPUT);
}
void loop() {
digitalWrite(10, LOW);
digitalWrite(11, HIGH);
analogWrite(3, pwm_speedB);
digitalWrite(9, LOW);
digitalWrite(6, HIGH);
analogWrite(5, pwm_speedA);
```

The value for IN1 needs to be LOW, the value for IN2 needs to be HIGH and the enable pin needs to be given a value to rotate the motor in a counterclockwise direction.

Activity 3.5		
• Modify the code in Figure 3.11 to control the DC motors to turn left. Hint: Review the skid steering section studied in Unit 1 to understand motor directions for different turns.		
Arduino code:		
<pre>//speed of motors between 0 and 255, if you like you can change it int pwm_speedA = 255; int pwm_speedB = 240; void setup() { Serial1.begin(9600); //pins for motor controller</pre>		
pinMode(9, OUTPUT); pinMode(6, OUTPUT); pinMode(5, OUTPUT); pinMode(11, OUTPUT); pinMode(10, OUTPUT); pinMode(3, OUTPUT);		
} void loop() { //turning left digitalWrite(9, HIGH); digitalWrite(6, LOW); analogWrite(5, pwm_speedA);		
digitalWrite(10, LOW); digitalWrite(11, LOW); analogWrite(3, 0);		
}		
To turn the motors left, motor A (left-hand side motor) needs to be turned off and motor B (right-hand side motor) need to be turned on.		

```
Activity 3.6
     Get creative
   •
         You have learned how to program Arduino to turn the DC motors left and right.
         Taking into consideration the design of the space rover, edit the code in Error!
         Reference source not found. to allow the motors to make a sharp turn, either
         to the left or right.
         Hint: Review the skid steering section studied in Unit 1 to understand motor
         directions for different turns.
Arduino code:
//speed of motors between 0 and 255, if you like you can change it
int pwm speedA = 255;
int pwm speedB = 240;
char command;
void setup() {
Serial1.begin(9600);
//pins for motor controller
pinMode(11, OUTPUT);
pinMode(10, OUTPUT);
pinMode(9, OUTPUT); WW.almanahj.com
pinMode(6, OUTPUT);
pinMode(5, OUTPUT);
pinMode(3, OUTPUT);
}
void loop() {
digitalWrite(10, HIGH);
digitalWrite(11, LOW);
digitalWrite(9, LOW);
digitalWrite(6, HIGH);
analogWrite(3, pwm_speedB);
analogWrite(5, pwm speedA);
}
For the motor to make a sharp turn to the left, motor A needs to rotate counterclockwise while
motor B needs to rotate clockwise.
```

• Why do you think you need a switch case statement to write the code for your space rover?

The mobile application has several commands that need to be executed separately when the specific command is used. The switch case statement can switch between different commands by using variables and cases.

www.almanahj.com

```
Activity 3.8
      The switch case statements needed for your circuit are shown below. Fill in the
   •
      blanks with the correct code for each statement. Refer to Error! Reference source
      not found. and Error! Reference source not found. for the correct pin connections.
Arduino code:
void loop() {
if (Serial 1. available() > 0)
command = Serial1.read();
motors stop();
switch(command){
case 'F':
forward():
break:
case 'B':
backward();
break;
case 'L':
left();
break:
case 'R':
right();
break;
                   www.almanahj.com
}
}
 }
// function for driving straight
void forward(){
digitalWrite(10, HIGH);
digitalWrite(11, LOW);
digitalWrite(9, HIGH);
digitalWrite(6, LOW);
analogWrite(5, pwm speedA);
analogWrite(3, pwm_speedB);
}
//function for reversing
void backward(){
digitalWrite(10, LOW);
digitalWrite(11, HIGH);
digitalWrite(9, LOW);
```

digitalWrite(6, HIGH);

analogWrite(5, pwm_speedA); analogWrite(3, pwm_speedB);

}

//function for turning right
void right(){

digitalWrite(10, HIGH); digitalWrite(11, LOW);

```
digitalWrite(9, LOW);
digitalWrite(6, LOW);
```

```
analogWrite(3, pwm_speedB);
analogWrite(5, 0);
```

}

```
//function for turning teft WW.almanahj.com
```

```
digitalWrite(11, LOW);
digitalWrite(10, LOW);
```

digitalWrite(9, HIGH); digitalWrite(6, LOW);

analogWrite(3,0); analogWrite(5,pwm_speedA);

}

//function for stopping motors
void motors_stop(){

digitalWrite(11, LOW); digitalWrite(10, LOW);

```
digitalWrite(9,LOW);
digitalWrite(6,LOW);
```

```
analogWrite(5,0);
analogWrite(3,0);
```

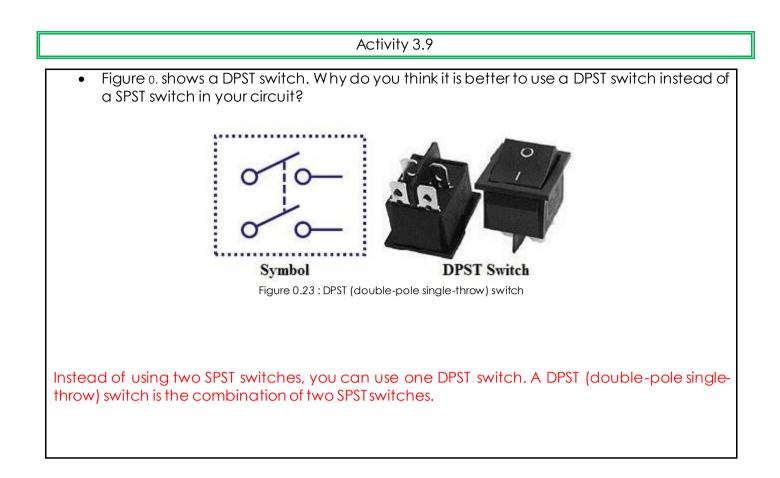
```
}
```

Writing the code

- 1- Define the variables below.
 - pwm_speedA Define the variable as an integer and give it a value from 0-255.
 - pwm_speedB Define the variable as an integer and give it a value from 0-255.
 - **command** Define the variable as a character.

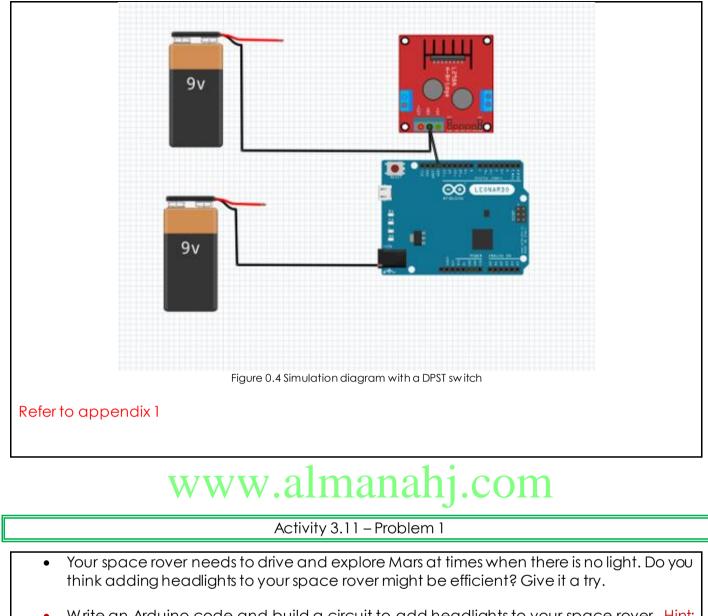
int pwm_speedA=255; int pwm speedB=240; char command;

- 2- Void setup
 - Start a serial communication to be able to use the serial monitor (Serial1.begin(9600)).
 - Define the pins for the motor driver as outputs. Refer to Error! Reference source not found. and Error! Reference source not found. for the correct pin connections.


```
void setup() {
```

```
Serial1.begin(9600);
//pins for motor controller
pinMode(11, OUTPUT);
pinMode(10, OUTPUT);
pinMode(9, OUTPUT);
pinMode(6, OUTPUT);
pinMode(5, OUTPUT);
pinMode(3, OUTPUT);
```

}

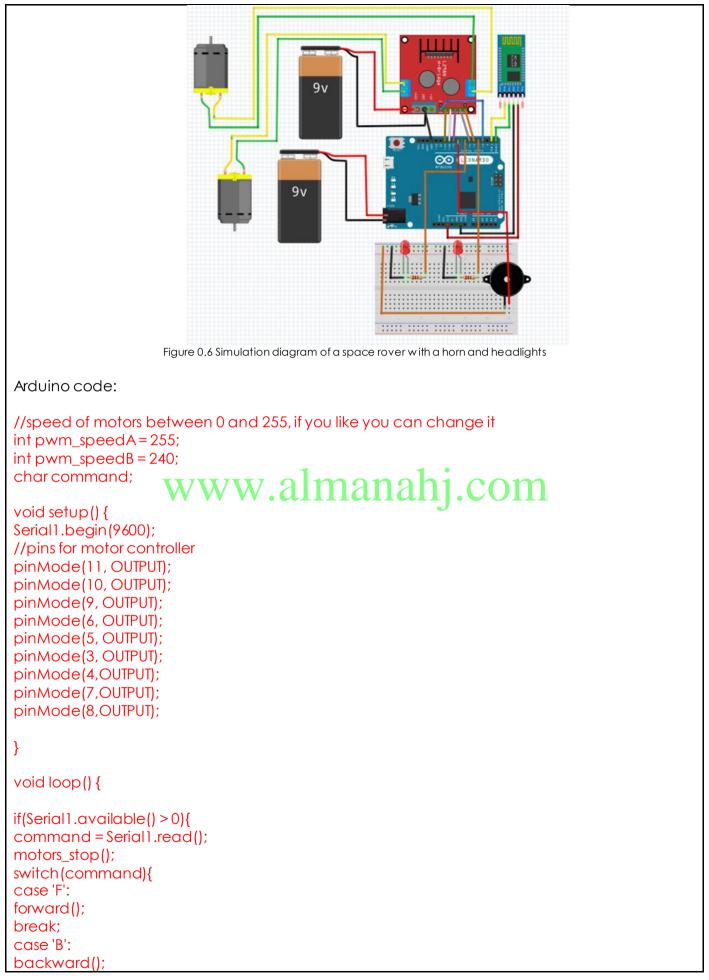

3- Void loop

• Refer to Activity 3.8.

www.almanahj.com

• Add a DPST switch to your circuit. Draw the positive wires and the switch into Figure 0.4. Use the symbol of a DPST switch shown in Figure 0..

• Write an Arduino code and build a circuit to add headlights to your space rover. Hint: You will need to add two commands to your switch case statement. The commands will be 'W' to turn the headlights on, and 'w' to turn the headlights off.


```
91
                                                      9v
                      Figure 0.5 Simulation diagram for a space rover with headlights
Arduino code:
//speed of motors between 0 and 255, if you like you can change it
int pwm_speedA=255/WW.almanah1.com
int pwm speedB = 240;
char command:
void setup() {
Serial1.begin(9600);
//pins for motor controller
pinMode(11, OUTPUT);
pinMode(10, OUTPUT);
pinMode(9, OUTPUT);
pinMode(6, OUTPUT);
pinMode(5, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4,OUTPUT);
pinMode(7,OUTPUT);
}
void loop() {
if(Serial1.available() > 0)
command = Serial1.read();
motors_stop();
switch(command){
case 'F':
forward();
break;
```

```
case 'B':
backward();
break:
case 'L':
left();
break;
case 'R':
right();
break;
case 'W':
LEDon();
break;
case 'w':
LEDoff();
break;
}
}
}
// function for driving straight
void forward(){
digitalWrite(10, HIGH);
digitalWrite(11, LOW);
digitalWrite(9, HIGH);
digitalWrite(6, LOW); WWW.almanahj.com
analogWrite(5, pwm_speedA);
analogWrite(3, pwm_speedB);
}
//function for reversing
void backward(){
digitalWrite(10, LOW);
digitalWrite(11, HIGH);
digitalWrite(9, LOW);
digitalWrite(6, HIGH);
analogWrite(5, pwm_speedA);
analogWrite(3, pwm_speedB);
}
//function for turning left
void left(){
digitalWrite(11, LOW);
digitalWrite(10, LOW);
digitalWrite(9, HIGH);
digitalWrite(6, LOW);
analogWrite(3,0);
```

```
analogWrite(5, pwm_speedA);
}
//function for turning right
void right(){
digitalWrite(10, HIGH);
digitalWrite(11, LOW);
digitalWrite(9, LOW);
digitalWrite(6, LOW);
analogWrite(3, pwm_speedB);
analogWrite(5,0);
}
void LEDon(){
digitalWrite(4, HIGH);
digitalWrite(7, HIGH);
}
void LEDoff(){
digitalWrite(4, LOW);
digitalWrite(7, LOW);
                    www.almanahj.com
}
//function for stopping motors
void motors_stop(){
digitalWrite(11, LOW);
digitalWrite(10, LOW);
digitalWrite(9,LOW);
digitalWrite(6, LOW);
analogWrite(5,0);
analogWrite(3,0);
}
```

Activity 3.12 – Problem 2

- What are the advantages of adding a horn to your space rover?
- Write an Arduino code and build a circuit to add a horn to your circuit. Hint: You will need to add two commands to your switch case statement. The commands will be 'V' to turn the horn on, and 'v' to turn the horn off.


```
break;
case 'L':
left();
break;
case 'R':
right();
break;
case 'W':
LEDon();
break;
case 'w':
LEDoff();
break;
case 'V':
hornon();
break;
case 'v':
hornoff();
break;
}
}
}
// function for driving straight
void forward(){
digitalWrite(10, HIGH); WWW.almanahj.com
digitalWrite(9, HIGH);
digitalWrite(6, LOW);
analogWrite(5, pwm_speedA);
analogWrite(3, pwm_speedB);
}
//function for reversing
void backward(){
digitalWrite(10, LOW);
digitalWrite(11, HIGH);
digitalWrite(9, LOW);
digitalWrite(6, HIGH);
analogWrite(5, pwm_speedA);
analogWrite(3, pwm_speedB);
}
//function for turning left
void left(){
digitalWrite(11, LOW);
digitalWrite(10, LOW);
```

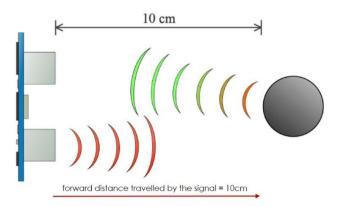
```
digitalWrite(9, HIGH);
digitalWrite(6, LOW);
analogWrite(3,0);
analogWrite(5, pwm_speedA);
}
//function for turning right
void right(){
digitalWrite(10, HIGH);
digitalWrite(11, LOW);
digitalWrite(9, LOW);
digitalWrite(6, LOW);
analogWrite(3, pwm_speedB);
analogWrite(5,0);
}
void LEDon(){
digitalWrite(4, HIGH);
digitalWrite(7, HIGH);
}
void LEDoff(){
digitalWrite(4, LOW); www.almanahj.com
digitalWrite(7, LOW);
}
void hornon(){
digitalWrite(8, HIGH);
}
void hornoff(){
digitalWrite(8, LOW);
}
//function for stopping motors
void motors_stop(){
digitalWrite(11, LOW);
digitalWrite(10, LOW);
digitalWrite(9,LOW);
digitalWrite(6, LOW);
analogWrite(5,0);
analogWrite(3,0);
```

```
}
```

Writing the code

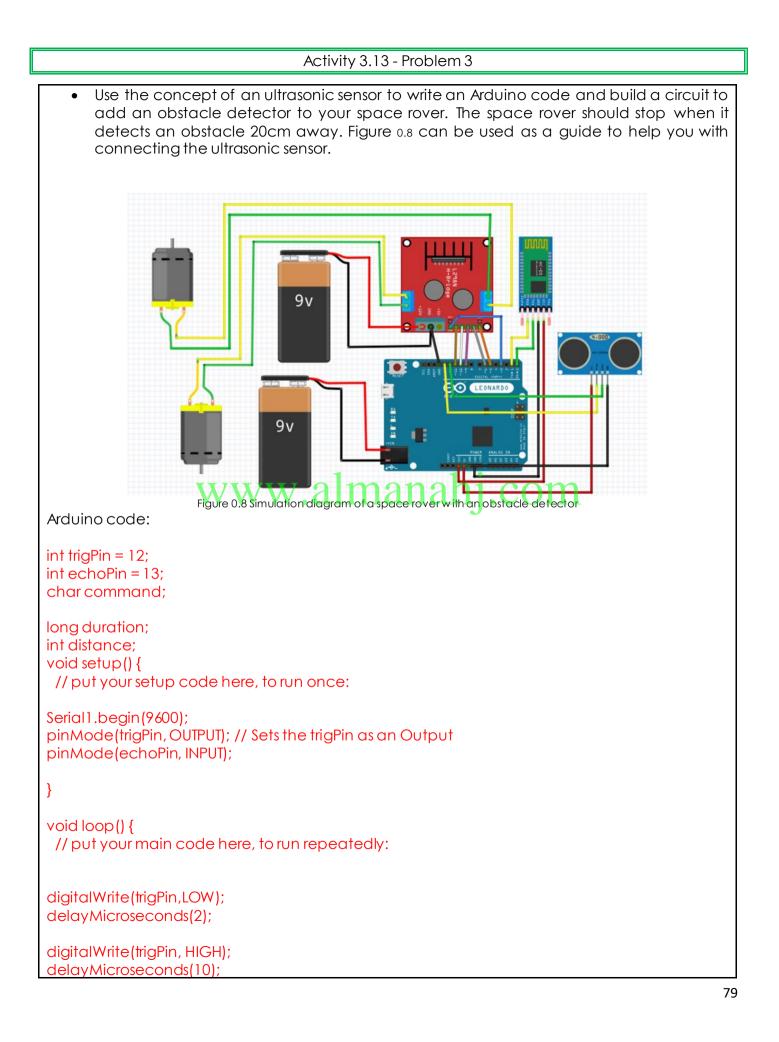
- 1. Define the variables.
 - Trig pin of the ultrasonic module is connected to pin12 of the Arduino board.
 - Echo pin of the ultrasonic module is connected to pin13 of the Arduino board.

int trigPin = 12;
int echoPin = 13;
char command;


- 2. Void setup
 - Start a serial communication to be able to use the serial monitor.
 - Define the trig_pin as an OUTPUT because it sends out an object detection signal.
 - Define the echo_pin as an INPUT because it receives a signal when an object is detected.

void setup() {

Serial 1.begin (9600); pinMode (trigPin, OUTPUT); // Sets the trigPin as an Output pinMode (echoPin, INPUT);


- 3. Void loop
 - Define two variables to hold the values of the duration and distance.
 - Set the trig_pin on a LOW state for 2µs to make sure that the trig_pin is clear.
 - Set the trig_pin on HIGH state for 10µs, and then LOW again, to generate the ultrasound wave.
 - Duration is measured using the 'pulseln' function, which reads the signal's travel time.
 - The 'pulseln' function takes two variables, the signal pin and its status as high or low.
 - When using it as pulseln (Echo_pin, HIGH), this means when the echo_pin goes high (a reflected signal is detected) and the timing is started.
 - Calculate the distance where the speed of sound equals to 340m/s (0.034cm/ µs). The distance calculated should be divided by 2, as it represents the forward and backward distances that the signal has travelled. An example is shown in the figure below.

backward distance travelled by the signal = 10cm

- Figure 0.7: Forward and backward distances travelled by the sound wave
- Print the distance value on the serial monitor.

<pre>void loop() { //variables</pre>
long duration, distance;
digitalWrite(trigPin,LOW); delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW); www.almanahj.com
duration = pulseln (echoPin, HIGH);
distance=duration*0.034/2;
//print the distance value on the serial monitor
Serial.println(distance);
delay(500);
}


```
digitalWrite(trigPin, LOW);
duration = pulseln(echoPin, HIGH);
distance=duration*0.034/2;
Serial.println(distance);
if (distance<20){
digitalWrite(11, LOW);
digitalWrite(10, LOW);
digitalWrite(9,LOW);
digitalWrite(6, LOW);
analogWrite(5,0);
analogWrite(3,0);
}
if (distance>=20){
digitalWrite(11, HIGH);
digitalWrite(10, LOW);
digitalWrite(9,HIGH); www.almanahj.com
analogWrite(5,255);
analogWrite(3,240);
}
}
```

Unit 4: Space Rover Project

Lesson 1: Introduction to Space Rover project

<u> Aim:</u>

This lesson aims to introduce students to the space rover project brief. Students will become familiar with the design process. Students will then analyse the brief and carry out research with the aim of creating at least two possible solutions. Students will use these possible solutions to create a final solution to be presented in the following lesson.

Teacher Learning Objectives: Learning objective refers to what you as a teacher will have taught the student by the end of the lesson. Teachers are to tick the box when the they have covered a learning objective.

- \Box Present the design brief
- \Box Explain function and demonstrate examples of mind maps
- \Box Explore and explain different methods of research.
- Present sketching techniques and facilitate as students sketch designs

<u>Student Learning Outcomes:</u> Learning outcomes refer to what the student can expect from the lesson, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to:

- \Box Create a mind map to analyse the brief.
- □ Investigate areas of research linked to the space rover and then record your finding through annotations and sketching.
- Creatively sketch at least two design ideas for possible solutions that meet the requirements of the brief.
- \Box Sketch one final solution showing all required detail.

Keywords	 What are the keywords the students must learn? space rover drivetrain suspension
Resources	What resources are required? textbooks projector sketching equipment
Prior Knowledge	 Technologies in space exploration Sustainability Mars electronics

Possible Teaching Method(s) or Approach for this lesson

- Collaborative Teaching (student centred)
- Instructional / Demonstrative Teaching (teacher centred)
- Inquiry-based Teaching (student centred)
- □ Lecture Style Teaching (teacher centred)
- Coach Style Teaching (teacher centred)
- □ Facilitator Style Teaching (student centred)

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

Торіс	Page		
	Essential	Non-essential/Self Study	
Analysis of brief	Pg. 169-171		
Research and investigation of	Pg. 172-174		
possible solutions			
Possible solutions	Pg. 175-178		
Final Solution	Pg. 179-182		

Development [Phases or chunks of learning]: Note: All lessons start with Phase 1, Lessons can move back and forth between phases 2 and 3 as content is covered and then students engage. All lessons must finish with	Notes for differentiation: Note: All lessons can be different depending on ability and success of previous lesson. Place additional notes or activities to	<u>Assessment</u> <u>Opportunities:</u>
phase 4 to evaluate learning. Phase 1 of lesson (Connect) Starter Teacher to introduce students to the lesson aim. Teacher to place all student learning outcomes on the board and ensure student understanding of aims and outcomes.	cater for differentiation where necessary through ought the lesson.	
Teacher to introduce all key words, discuss meaning and ensure understanding before progressing <u>Teacher Tip:</u> Teacher to set high expectations which inspire, motivate and challenge pupils.		
Phase 2 of lesson (Activate) Teacher to present Project brief. Teacher to question students on initial understanding of brief. Teacher to explain function and methods of analysing a brief. Students to discuss and break down the brief in their groups.	anahj.com	Questioning. Questioning / Mind Map
Teacher to present different methods of research. Students to discuss and decide on appropriate methods of research to be carried out.		Questioning.
Teacher to introduce stage 3, Possible solutions. Students to examine design loop diagram on pg. 175 Question students on how well their research satisfies the brief. Are students ready to sketch possible solutions?		Questioning.
Teacher to present stage 4 final solution. Students must understand the importance of final design and how it will directly contribute to the design realisation stage. Teacher Tip:		Questioning.

Teacher to demonstrate good subject and curriculum knowledge		
Phase 3 of lesson (Engage and Demonstrate) Students to demonstrate understanding of brief by analysing brief. Teacher to facilitate as student's complete activities 1.1 and 1.2		Written Activities 1.1- 1.2
Students to complete extensive research and present their findings in activity 1.3 Teacher to facilitate as student's complete activity		Written Activity 1.3
Students to analyse their research from activity 1.3. Take positives and negatives and use them to sketch at least two possible solutions that satisfy the design brief. Students demonstrate understanding of brief and research by completing activity 1.4 Teacher to facilitate as student's complete possible solutions		Written / sketching Activity 1.4 Written /
Students to discuss positive and negative aspects of their groups possible solutions. Students to combine new fond knowledge to develop one final solution that best satisfies the brief.	anahj.com	sketching Activity 1.5
<u>Teacher Tip:</u>		
Use groupwork as appropriate, get to know your class and organise groups to support mixed ability's.		
Phase 4 Plenary (Consolidate) Teacher to facilitate as student's complete activities 1.1-1.5 Question pupils on what they have learned.		Oral Assessment
Have learning outcomes been met? Has the		
lesson aim been achieved? All students must complete activity 1.5 and		
present final solution in the next lesson.		

Answer Key/ Resources

Stage 1: Analysis of brief:

This section should show evidence of understanding of the given brief. Areas which require solutions should be identified and problems which will be encountered should be recognized.

What is a Design Brief?

A Design brief is a written description that outlines the design or engineering problem being posed to the student. It also highlights the requirements of the student's final solution.

Design brief

• As Creative Design and Innovation students of the UAE, you are expected to contribute to future projects UAE projects. One major ongoing project that is constantly progressing is the Emirates Mars Mission. In this unit you are expected to design a space rover to contribute to this mission. The space rover must contain a rocker-bogie mechanism that is capable of conquering difficult terrain and climbing at least the height of its wheel diameter. The space rover must be controlled wirelessly to allow exploration of Mars without risk to astronauts. The design should showcase knowledge of vehicle design and wireless control as studied earlier in the term. The design should also utilise design skills gained from Term 2.

- Design a model space rover to the specifications outlined below.
- Your design should be unique and innovative, and it should:
- • contain an electronic circuit to drive forwards and backwards.
- • turn left and right.
- use a maximum of 12 volts to drive the electronic circuit.
- • contain a rocker-bogie mechanism.
- • contain at least six wheels and be all-wheel drive.
- • outline at least one aspect of sustainable design.
- demonstrate wireless control using Bluetooth.
- • contain at least one extension to the circuit as studied in Unit 3.
- enclose all electronic components.
- • be 3D printed and fully assembled with the electronic circuit.

Where do I start?

Explore the brief carefully yourself before you introduce to your students. A good exercise to start is reading the brief with your students and getting them to highlight what they feel are the keywords in the brief. This will help to break down the design one step at a time. The students will fill this into their books, some examples of keywords are shown below:

How will I encourage my student's creativity?

A very useful group exercise at this stage is brainstorming. Brainstorming is a group creativity technique, designed to generate a large number of ideas for solving a problem. Students or the teacher can write the discussed ideas on the board. Throughout the session you should:

- Focus on quantity.
- No criticism is allowed.
- Unusual ideas are welcome.
- There are no wrong answers at this stage.
- Combine and improve ideas

• **Teacher Tip:** The group could be seated in a U direction to encourage discussion. The teacher will act in a facilitating role and can guide the discussion where necessary.

Activity 1.1

Highlight or circle keywords and phrases in the brief. This will help to break down the design one step at a time. List five of these keywords below and describe their meaning.

Keyword W.almananj.C.Megning		
Space Rover	a space exploration vehicle designed to move across the surface of a planet or other celestial body	
rocker-Bogie	A suspension mechanism that allows vehicles to spread weight distribution evenly while traveling over harsh terrain.	
diameter	a straight line from one edge of a circle or sphere to the other while passing through the centre.	
wireless	Transmitting messages or signals without the use of wire.	
all wheel drive	Power delivered from motor to each wheel of the vehicle.	

Activity 1.2

In the space below, create your own unique Mind Map detailing all the requirements of the space rover design: You may use Figure 4.2 as a starting point for some ideas to discuss.

Encourage students to really explore every aspect of the brief here. Use as many branches as necessary to demonstrate the brief on a mind map. Use colour to show clarity.

Where can I encourage my students to look for inspiration?

You could do up a powerpoint presentation addressing some of the points below or you could even ask a guest speaker to come into school to speak about design.

When designing a product, designers often look at various areas for inspiration. Some of these include:

- **nature** The natural patterns and forms found in nature are often used as a starting point for fresh ideas.
- **architecture** Common shapes or forms can provide inspiration when thinking of creative ideas.
- **design movements** Design movements such as Art Nouveau, Modernism, Bauhaus, Art Deco, etc. can provide inspiration for new innovative ideas.
- **past and future solutions** Looking at previous designs of can really help. Most modernday inventions or designs are an improvement on, or inspired by, an existing product. Futuristic or concept designs can really get creativity flowing.
- **internet and social media –** Google images, Pinterest, YouTube and Instagram can be great assets in gaining inspiration for a design.

• **Teacher Tip:** Put up various images of successful designers work or quotes on your walls to help develop the interest of your students in design.

Stage 2: Research and investigation of possible solutions

What should my students include in this section?

There are two distinct elements to this stage of the process:

- 1. **Research and investigation:** Students should clearly show the investigation that has been completed. The investigation should display your understanding of the brief. They can use notes, sketches, images from the web, magazine cut outs etc. Avoid having just a collection of information gathered, students should explain why this information is useful.
- 2. Possible solutions: Using the information gathered, sketch a number of possible solutions. You should use a number of sketching techniques.

Possible solutions will be produced in Stage 3 not here, but students should be thinking about possible solutions when carrying out their research.

What methods of research should the students use?

You could start by introducing students to the two types of research- primary and secondary research.

Primary research involves the observation of associated objects in your immediate environment or locality. For example, students could visit the MOHAMMED BIN RASHID SPACE CENTRE

School tours can be arranged, see link below:

https://mbrsc.ae/en/page/visit-mbrsc

Secondary research involves gathering information from existing sources. You should encourage students to consider the following sources.

- Libraries
- Books
- Magazines
- Catalogues
- Homecare and hardware stores
- Exhibitions
- Websites

Students should take note of any inspiration gathered at any stage of this process as this will be useful for their presentation of investigation. These images can be used in the mood board.

• **Teacher Tip:** Encourage students to use forms of research they might enjoy like capturing and sharing images on Snapchat or Instagram.

What is required of my students in this section?

Each time they carry out research they should be posing questions about their design. Some examples of the questions they may have are listed below:

- What features should my design contain?
- What suspension systems are used?
- What electronic components are required?
- What materials are suitable for my design?
- What size/scale should my design be?
- What features should my design contain?

• **Note:** Students are required to investigate **at least three** essential requirements of their chosen design. These questions will be developed from their brainstorming session and mind mapping in the analysis of brief.

How should my students present their research and investigation?

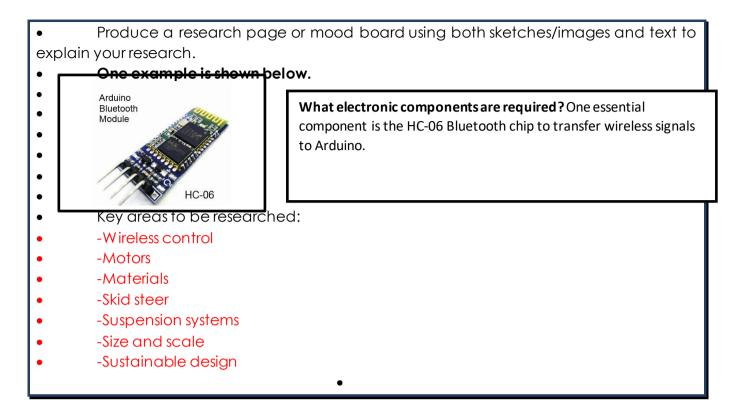
When presenting their research, they will need to condense it down and give the teacher a clear picture of the research they have carried out. This should all be presented in the Investigation section of their **books page 173-174**. You should encourage students to consider the following:

www.almanahj.com

• **Teacher Tip:** It would be a very good idea to have students get a folder to store all their work. Or have somewhere safe they can store it before its transferred to the book.

- Using images and freehand sketches is a clever way of presenting investigation.
- A mood board is a great way to represent where students got their inspiration.
- Virtually any conceivable method of presentation can be used to convey the thought process
- Images from books, catalogues and the internet are fine, but they must be accompanied by short notes describing their purpose.
- If your students have prior knowledge of any word processing/desktop publishing software they could use it here.
- Images and annotations together give a distinct representation of the research undertaken.
- Students may include extra pages to accompany their book for this section.
- Try to be as creative and unique as possible.

Why are annotations/ notes important to accompany images and sketches throughout this project?


These annotations are where the real 'critical thinking' takes place. They should be found throughout the project. They demonstrate a good understanding for the various design features.

What are mood boards?

As mentioned above a mood board is a great way to represent where students got their inspiration. A mood board is an arrangement of images, materials or text which is used for inspiration for a new design concept. Designers often use mood boards as inspiration for creativity, a good starting point for their design.

Activity 1.3

www.almanahj.com

Stage 3: Possible solutions

What is required of my students for possible solutions:

Using the information gathered, students should sketch at least two possible solutions. They can use a number of sketching techniques.

Possible solutions must:

- explain the operation of the design solution.
- state advantages and disadvantages of each solution.
- Show how it meets the brief

What choice do your students have in this section?

1. Students may wish to generate ideas by redesigning the existing products they researched.

OR

2. Communicate their own new design ideas graphically using sketches.

This means that students have the choice to create a possible solution based on an existing products design or they can come up with their own completely new design.

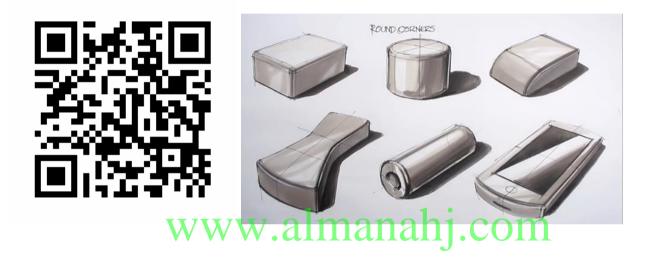
Do my students have to use freehand sketching in this section?

Yes, the student's possible solutions must be represented using freehand sketches. Students should practice sketching their possible solutions before they transfer into book.

• **Teacher Tip:** It would be a good idea to photocopy this section out of book for students to practice on and show you their attempts before they transfer into book.

Sketching- practice makes perfect

When it comes to sketching, the more practice our students get the more they improve as designers. Students should be encouraged to practice their sketching techniques if they get any spare time in school or at home. Youtube is full of videos on sketching techniques, if students wish to practice at home.



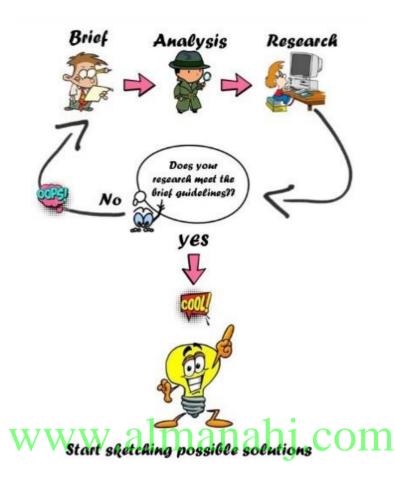
• **Teacher Tip:** You could encourage students that like sketching or who are particularly passionate about design to get themselves a sketch pad to store their sketches.

Sketching exercise

You could get students practising how to sketch basic shapes using the video exercise below.

https://www.youtube.com/watch?v=6ZU-ryDOtLw&t=22s

How should my students present their work?


The layout of the sketches is up to the student, they can have a single sketch to present their ideas or a number of sketches. Students should be encouraged to consider the following:

- All sketches should be very neat and tidy. The use of colour and shading is encouraged.
- Students can use a variety of sketching techniques.
- 2D and 3D format are both acceptable, but a combination of both will be a better representation.
- Neat annotations or notes would help in explaining the operation of student designs.
- Students should give at least two advantages and two disadvantages to each design.
- Students may include extra pages to accompany their book for this section.

What guidance can I give my students for possible solutions?

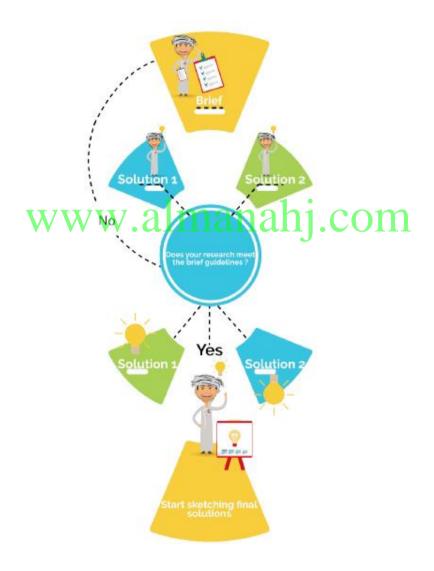
- Look at the details in students research
- pay attention to colour, shape, texture
- what materials are used in my design and what is their pattern.

Use the design process below to help guide your students through preparing for possible solutions.

• **Note:** Does the student's possible solutions meet the criteria of brief? If not give them feedback on areas to change or to come up with another idea

Activity 1.4

Complete at least 2 possible designs. State advantages and disadvantages of each. Encourage rendering or color to enhance designs.


Stage 4: Selection of final solution

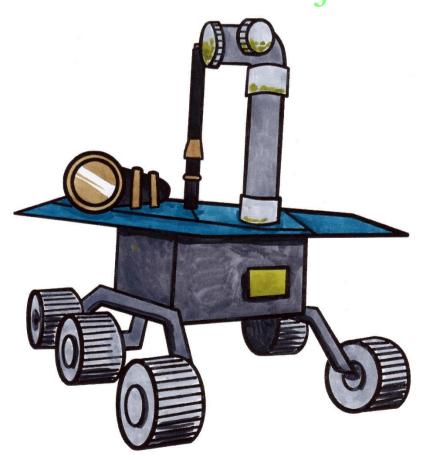
What is required of my students for selection of final solution?

In this stage, one final design solution that best fits the brief must be chosen. This solution maybe based on one of the possible solutions or a mixture of possible solutions. It is important that students show the reasons for choosing one solution over another. The way students present their work will be quite similar to the previous section.

What guidance can I give my students for selection of their final design?

Students can follow the diagram below to help guide them in selection of final design: **First and foremost**, **the final design must meet the criteria of the brief**.

How should my students present their work?


The layout of the sketches is up to the student, they can have a single sketch to present their ideas or a number of sketches. Students should be encouraged to consider the following:

- All sketches should be very neat and tidy. The use of colour and shading is encouraged.
- Students can use a variety of sketching techniques.
- 2D and 3D format are both acceptable, but a combination of orthographic 2D and 3D sketches will be a better representation.
- Neat annotations or notes would help in explaining the operation of student design
- State reasons for choosing this design.
- Select suitable materials for manufacturing and give reasons.
- Students can get creative with how they present their final design.
- Students can include extra pages to accompany their book for this section.

• **Note:** Each student design should be unique and innovative. Encourage students to think outside the box and try to add features that will make their designs unique and stand out against their classmates.

Activity 1.5

Below is sketched example of a unique space rover design, it will give you an idea of the quality that can be expected from students

Unit 4: Space Rover Project

Lesson 2: Design realistaion / manufacture of space rover

<u> Aim:</u>

This lesson aims to finalise space rover design and begin the design realisation process. Students will present their final solution and ensure it satisfies the brief. Students will then become familiar with the 3 main aspects of the design realisation process.

Teacher Learning Objectives: Learning objective refers to what you as a teacher will have taught the student by the end of the lesson. Teachers are to tick the box when the they have covered a learning objective.

- Give feedback on final design ideas.
- Recap on Unit 3, Lesson 3: Space rover electronics with pupils.
- Demonstrate assembly of final circuit.
- Present fusion 360 micro lessons as needed.

<u>Student Learning Outcomes:</u> Learning outcomes refer to what the student can expect from the lesson, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to:

- □ Present one final solution
- Create a Bluetooth controlled Arduino circuit
- Begin to design a 3D space rover model on Fusion 360
- \Box Apply entrepreneurial attributes throughout the design process.

Keywords	 What are the keywords the students must learn? Design realisation Entrepreneurship All wheel drive
Resources	 What resources are required? textbooks projector sketching equipment Electronics kit Soldering kit Fusion 360 3D printer
Prior Knowledge	 Fusion 360 Sustainability Mars electronics Soldering

Possible Teaching Method(s) or Approach for this lesson

- Collaborative Teaching (student centred)
- Instructional / Demonstrative Teaching (teacher centred)
- Inquiry-based Teaching (student centred)
 Lecture Style Teaching (teacharcontree)
- Lecture Style Teaching (teacher centred)
- Coach Style Teaching (teacher centred)
- □ Facilitator Style Teaching (student centred)

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

Topic- Unit 4	Page	
	Essential	Non-essential/Self Study
Design realisation activity 1.6	Pg. 184	
Electronics	Pg. 185-187	
Model and manufacture	Pg. 188-193	

Topic - Unit 3-lesson 3	Page	
	Essential	Non-essential/Self Study
Step 4: Connecting SPST and DPST switches to the space rover circuit	Pg.146-148	

Development [Phases or chunks of learning]:Note: All lessons start with Phase 1, Lessonscan move back and forth between phases 2and 3 as content is covered and thenstudents engage. All lessons must finish withphase 4 to evaluate learning.Phase 1 of lesson (Connect)StarterTeacher to introduce students to thelesson aim.Teacher to place all student learningoutcomes on the board and ensurestudent understanding of aims andoutcomes.Teacher to introduce all key words, discussmeaning and ensure understandingbefore progressing	Notes for differentiation: Note: All lessons can be different depending on ability and success of previous lesson. Place additional notes or activities to cater for differentiation where necessary through ought the lesson.	Assessment Opportunities:
Teacher Tip:Teacher to set high expectations which inspire, motivate and challenge pupils.Phase 2 of lesson (Activate) Teacher to organise student groups. Students to present final solution (Activate)	anahi.com	Questioning.
Teacher to give feedback based on how well design meets the brief. Teacher to recap on unit 3 space rover electronics. Students to recall knowledge on Arduino electronics.		
Teachers to introduce students to step 4: Connecting SPST and DPST switches to the space rover circuit from Unit 3-lesson 3. Teacher to demonstrate assembly of final circuit. Teacher to question students on Arduino code from unit 3.		
Teacher to introduce model and manufacture stage. Students to explore and discuss given fusion 360 parts and how they will fit into final design. Teacher to present micro Fusion 360 lessons on features as needed by assessing class progress. (see resources for week 5)		

Students to explore modelling techniques that will solve their design idea.		
<u>Teacher Tip:</u> Teacher to demonstrate good subject and curriculum knowledge		Written Activity 1.8
Phase 3 of lesson (Engage and Demonstrate) Students to demonstrate understanding by completing full circuit diagram.		Written Activity 1.9
Students to apply knowledge by building final circuit and completing activity 1.8 Teacher to facilitate as circuits are constructed.		·
Facilitate as pupils' complete activities 3.9- 3.10 (Unit 3-lesson 3). Teacher to monitor students as the students solder DPST switch to the final circuit.		Written Activity 3.9- 3.10 (Unit 3)
Students to demonstrate understanding by creating final code to control circuit using Bluetooth. Teacher to facilitate as student's complete activity 1.9 and test final code.	anahj.com	Written Activity 1.10 / 1.11
Students to demonstrate understanding of design and measurement by completing activities 1.10 and 1.11 Students to analyse given fusion 360 models. Students to demonstrate modelling skills on Fusion 360. Students to begin designing a space rover on		Fusion 360 models in activity 1.12
fusion 360 model using the given motors and wheels. Teacher to facilitate as students work on fusion 360 design.		
Teacher Tip: Use groupwork as appropriate, get to know your class and organise groups to support mixed ability's.		Oral Assessment
Phase 4 Plenary (Consolidate) Teacher to facilitate as student's complete fusion 360 design Question pupils on what they have learned. Have learning outcomes been met? Has the		
lesson aim been achieved?		100

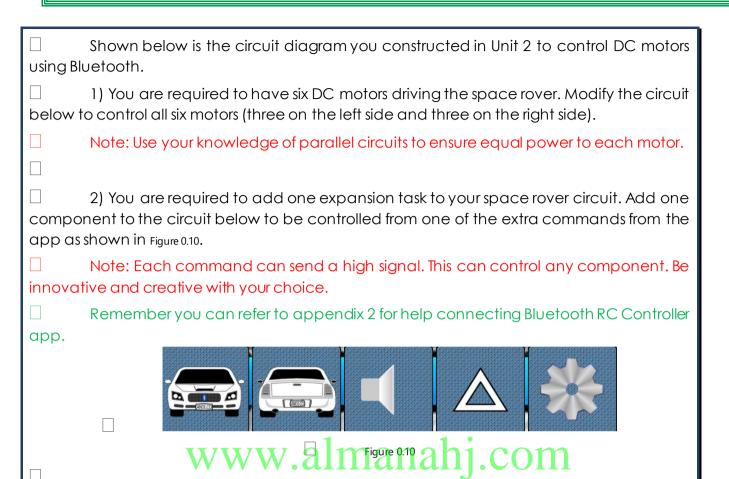
All	l students	should	have	presented	a
SUC	uccessful final design and began modelling				
	n fusion 360.	0		0	Ŭ

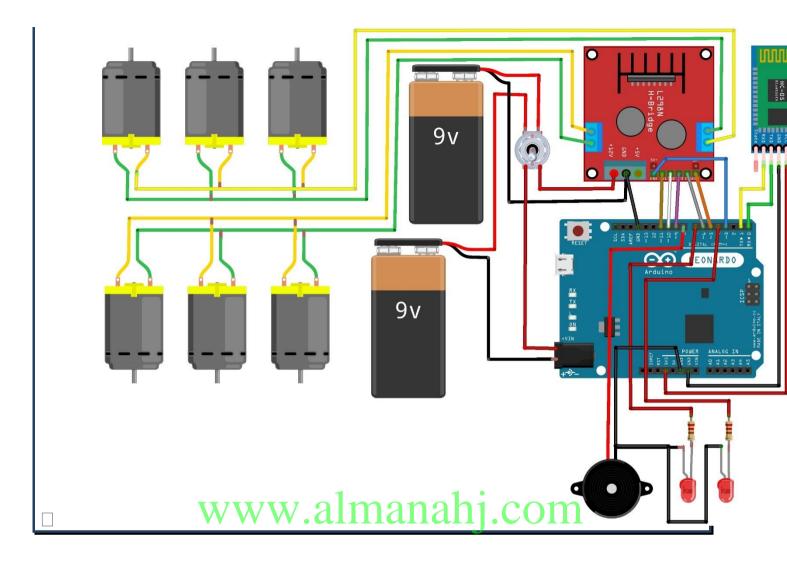
www.almanahj.com

Answer Key/ Resources

Activity 1.6

The images below show various pieces of equipment that may be used to complete the design realisation of the space rover. Name each piece of equipment and what stage of the process it could be used for.





www.almanahj.com

Activity 1.7

104

Activity1.8

You must now build the circuit from Activity 7. All motors should be soldered to red and black wires. Leave extra length on these wires to assemble your space rover model and circuit later.

Refer to appendix 1: soldering for help soldering motors.

When finished, paste a picture of your circuit below.

Paste a clear image of full circuit ready for coding and testing. Several images showing the circuit progressing is preferred.

Activity 1.9

break: case 'L': left(); break; case 'R': right(); break; case 'W': LEDon(); break; case 'w': LEDoff(); break; case 'V': hornon(); break; case 'v': hornoff(); break;

www.almanahj.com

}

}

}

// function for driving straight
void forward(){
digitalWrite(10, HIGH);
digitalWrite(11, LOW);

digitalWrite(9, HIGH); digitalWrite(6, LOW);

analogWrite(5, pwm_speedA); analogWrite(3, pwm_speedB); //function for reversing
void backward(){

digitalWrite(10, LOW); digitalWrite(11, HIGH);

digitalWrite(9, LOW); digitalWrite(6, HIGH);

analogWrite(5,pwm_speedA); analogWrite(3,pwm_speedB);

}

//function for turning left void left(){ digitalWrite(11, LOW); digitalWrite(10, LOW); W.almanahj.com

digitalWrite(9, HIGH); digitalWrite(6, LOW);

```
analogWrite(3,0);
analogWrite(5,pwm_speedA);
}
```

//function for turning right void right(){ digitalWrite(10, HIGH); digitalWrite(11, LOW);

digitalWrite(9, LOW); digitalWrite(6, LOW); analogWrite(3, pwm_speedB);
analogWrite(5, 0);

}

void LEDon(){ digitalWrite(4, HIGH); digitalWrite(7, HIGH);

}

void LEDoff(){ digitalWrite(4, LOW); digitalWrite(7, LOW);

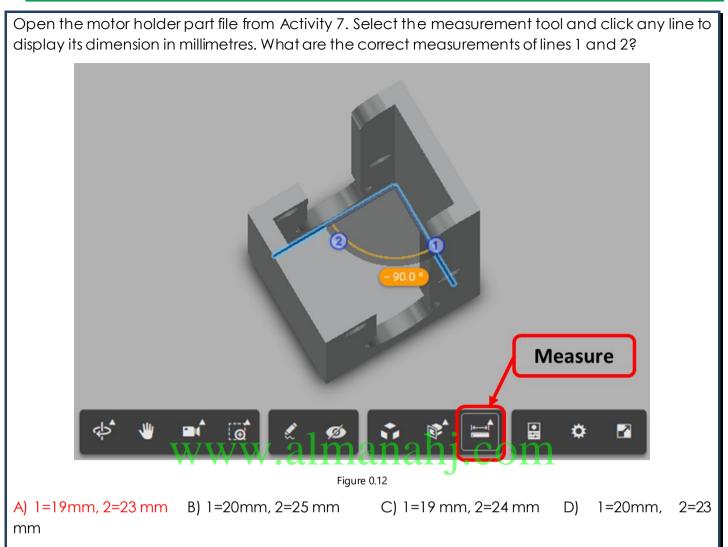
}

void hornon(){ digitalWrite(8, HIGH);

www.almanahj.com

} void hornoff(){ digitalWrite(8, LOW);

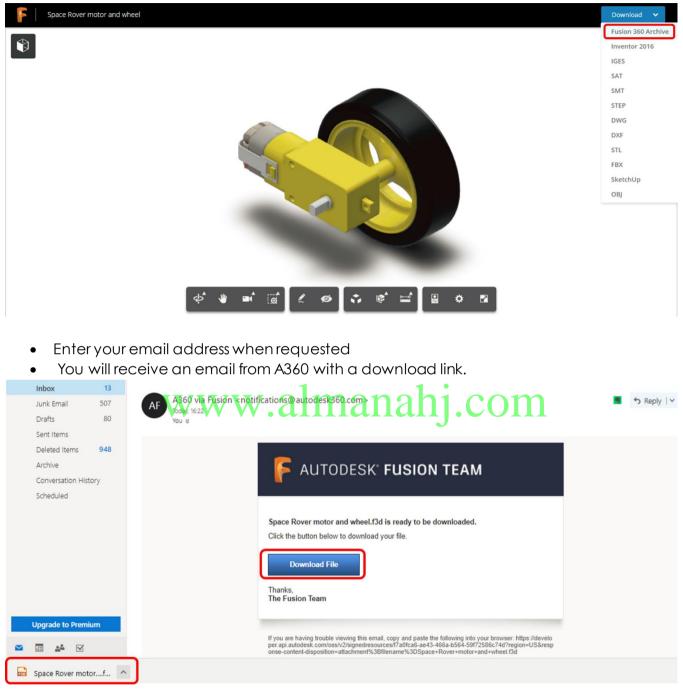
}


//function for stopping motors
void motors_stop(){

digitalWrite(11, LOW); digitalWrite(10, LOW);

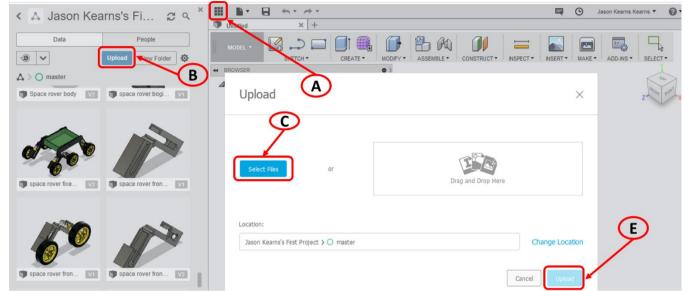
digitalWrite(9,LOW); digitalWrite(6, LOW); analogWrite(5, 0); analogWrite(3, 0); Activity 1.10

Activity 1.11


Scan the QR code or follow the link to access the Fusion 360 model of a motor and wheels. This file can be downloaded and used as a starting point for your design as parts are to full scale.

Note: Type the correct answer exactly as above to unlock the file.

Downloading given parts:


- Open the given part in browser.
- Select download > Select Fusion 360 archive

• Select download file and wait until F3D file downloads.

Uploading parts to data panel:

- a) Open fusion 360 and select show data panel
- b) Select upload
- c) Select files

d) Browse to download location and select f3d file to upload

Date modified 3/26/2018 8:26 PM	Type Autodes
3/26/2018 8:26 PM	Autode
iles (*.*)	~
	iles (*.*) Open C

- e) Select upload and wait until part has uploaded.
- f) The part is now available in your data panel.

Unit 4: Space Rover Project

Lesson 3: Stage 5: Design realistaion / manufacture continued

<u>Aim:</u>

This lesson aims to finalise the 3D Fusion 360 model. Students will begin to 3D print individual parts as they are finalised.

Teacher Learning Objectives: Learning objective refers to what you as a teacher will have taught the student by the end of the lesson. Teachers are to tick the box when the they have covered a learning objective.

- \Box Give feedback on fusion 360 models
- \Box Present fusion 360 micro lessons as needed.
- \Box Recap on 3D printing process

Student Learning Outcomes: Learning outcomes refer to what the student can expect from the lesson, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to: WW.almanahj.com

- Design a 3D space rover model on Fusion 360.
- \Box Apply entrepreneurial attributes throughout the design process.
- □ 3D print all models.

Keywords	 What are the keywords the students must learn? Design realisation Entrepreneurship All wheel drive
Resources	 What resources are required? textbooks projector sketching equipment Electronics kit Soldering kit Fusion 360 3D printer
Prior Knowledge	 Fusion 360 Sustainability Mars electronics Soldering

Possible Teaching Method(s) or Approach for this lesson

- Collaborative Teaching (student centred)
- □ Instructional / Demonstrative Teaching (teacher centred)
- Inquiry-based Teaching (student centred)
- Lecture Style Teaching (teacher centred) ij.com
- Coach Style Teaching (teacher centred)
- □ Facilitator Style Teaching (student centred)

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

Торіс	Page	
	Essential	Non-essential/Self Study
Electronics	Pg. 185-187	
Model and manufacture	Pg. 188-193	

Development (Phases or chunks of learning)	Notes for differentiation:	Assassment
Development [Phases or chunks of learning]: Note: All lessons start with Phase 1, Lessons can move back and forth between phases 2 and 3 as content is covered and then students engage. All lessons must finish with phase 4 to evaluate learning.	Notes for differentiation: Note: All lessons can be different depending on ability and success of previous lesson. Place additional notes or activities to cater for differentiation where necessary through ought the	<u>Assessment</u> <u>Opportunities:</u>
Phase 1 of lesson (Connect) Starter Teacher to introduce students to the lesson aim. Teacher to place all student learning outcomes on the board and ensure student understanding of aims and outcomes.	lesson.	
<u>Teacher Tip:</u> Teacher to set high expectations which inspire, motivate and challenge pupils.		
Phase 2 of lesson (Activate) Teacher to asses' student progress on fusion model and provide feedback. Students to discuss feedback given in groups.	1.	Questioning.
Teacher to present micro Fusion 360 lessons on features as needed by assessing class progress. (see resources for week 5) Students to explore modelling techniques that will solve their design idea.	lanahj.com	
Teacher to recap on 3D printing process		
Teacher Tip: Teacher to demonstrate good subject and curriculum knowledge		
Phase 3 of lesson (Engage and Demonstrate) Students to continue designing space rover on fusion 360. Teacher to facilitate as students work on fusion 360 design. Students to save all parts as STL files and export to flash print.		Fusion 360 models in activity 1.12
<u>Teacher Tip:</u>		

Use groupwork as appropriate, get to know your class and organise groups to support mixed ability's.	
Phase 4 Plenary (Consolidate) Teacher to facilitate as student's complete fusion 360 design Question pupils on what they have learned. Have learning outcomes been met? Has the lesson aim been achieved? All students should present final Fusion 360 model and begin 3D printing.	Oral Assessment

www.almanahj.com

Unit 4: Space Rover Project

Lesson 4: Project assembly and evaluation

<u> Aim:</u>

This lesson aims to assemble all 3D printed parts with the electronics

<u>Teacher Learning Objectives:</u> Learning objective refers to what you as a teacher will have taught the student by the end of the lesson. Teachers are to tick the box when the they have covered a learning objective.

 $\hfill\square$ Demonstrate assembly techniques.

 \Box Present evaluation questions

<u>Student Learning Outcomes:</u> Learning outcomes refer to what the student can expect from the lesson, Teachers must share these outcomes with all students. Teachers are to tick the box when the outcome is achieved. Learning outcomes can be assessed using oral questioning and the written activities.

Students should be able to:

- Design a 3D space rover model on Fusion 360. ahi com
- Assemble all parts and electronic components to create a working space rover model.
- $\hfill\square$ Test and evaluate finished product.

Keywords	 What are the keywords the students must learn? Design realisation Entrepreneurship All wheel drive
Resources	What resources are required? • textbooks • projector • sketching equipment • Electronics kit • Soldering kit • Fusion 360 • 3D printer
Prior Knowledge	 Fusion 360 Sustainability Mars electronics Soldering

Possible Teaching Method(s) or Approach for this lesson

- Collaborative Teaching (student centred)
- Instructional / Demonstrative Teaching (teacher centred)
- □ Inquiry-based Teaching (student centred)
- □ Lecture Style Teaching (teacher centred)
- Coach Style Teaching (feacher centred) anani.com
- □ Facilitator Style Teaching (student centred)

Essential and non-essential Sections:

In some lessons it may not be possible to cover every section of the book due to time constraints or lesson variables. Below is a guideline to essential sections for examination and project knowledge.

Торіс	Page	
	Essential	Non-essential/Self Study
Assembly of manufactured components	Pg. 194-195	
Evaluation	Pg. 196	
Entrepreneurship task		Pg. 197-198

Development [Phases or chunks of learning]:	Notes for differentiation:	Assessment
Note: All lessons start with Phase 1, Lessons	Note: All lessons can be different	Opportunities:
can move back and forth between phases 2	depending on ability and success	
and 3 as content is covered and then	of previous lesson. Place	
students engage. All lessons must finish with	additional notes or activities to	
phase 4 to evaluate learning.	cater for differentiation where	
Phase 1 of lesson (Connect)	necessary through ought the lesson.	
<u>Starter</u>	1035011.	
Teacher to introduce students to the		
lesson aim. Teacher to place all student learning		
outcomes on the board and ensure		
student understanding of aims and		
outcomes.		
<u>Teacher Tip:</u>		
Teacher to set high expectations which		
inspire, motivate and challenge pupils.		
Phase 2 of lesson (Activate)		
Teacher to introduce students to assembly		
techniques.		
Students to discuss their groups project and		Questioning.
what assembly techniques could be used for		
their project.		
www.aim	lanahj.com	
ensure understanding.		
<u>Teacher Tip:</u>		
Teacher to demonstrate good subject and		
curriculum knowledge		
Phase 3 of lesson (Engage and Demonstrate)		
Students to begin assembling all parts of the space rover.		
Teacher to facilitate as students assemble 3D		
printed parts		
Students to assemble electronic circuit with		Assessment of Final
assembled model.		assembled
Students to power on and test space rover.		model
Teacher to facilitate and provide feedback		
as necessary		
<u>Teacher Tip:</u>		
Use groupwork as appropriate, get to know		
your class and organise groups to support		
mixed ability's.		
		120

Phase 4 Plenary (Consolidate) Teacher to facilitate as students complete final evaluation	Written evaluation
Question pupils on what they have learned. Have project learning outcomes been met? Has the project aim been achieved? All students should complete student	Oral Assessment
learning reflection.	Student reflection

www.almanahj.com

Answer Key/ Resources

Stage 6: Evaluation

Once students have finished 3D printing their project and assembling it with electronic circuit, students should finish by testing and evaluating their work on this project.

Why is evaluation important?

It might be useful to discuss with students why evaluation and self-reflection is an important final stage of their project.

Evaluation affords the opportunity to reflect on the completed project. What went well and what could be improved in the future or what could I do better. It is a worthy learning process for overall improvement of our students in the subject of CDI.

What guidance can I give my students in completing the evaluation?

- Break down the evaluation questions and ensure student understanding of what is being asked.
- Facilitate as student's complete evaluation and submit.
- Encourage students not to just concentrate on the negatives but to really think about the positives, what went well and what are they most proud of.
- Facilitate students as they complete the student reflection section and point out the importance of reflection in all projects they complete.