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Chapter	22:		Electric	Fields	and	Gauss’s	Law		
	
Concept	Checks	

22.1.	b		22.2.	b		22.3.	a		22.4.	c		22.5.	c		22.6.	e		22.7.	c		22.8.	c		22.9.	e		22.10.	e		22.11.	a		22.12.	a		22.13.	c		22.14.	d	
	

Multiple‐Choice	Questions	

22.1.	e		22.2.	d		22.3.	a		22.4.	a		22.5.	d		22.6.	c		22.7.	c		22.8.	c		22.9.	a		22.10.	a	&	d		22.11.	a		22.12.	a,	d	and	e		
	

Conceptual	Questions	

22.13. The	 metal	 frame	 and	 sheet	 metal	 of	 the	 car	 form	 a	 Faraday	 cage,	 excluding	 the	 electric	 fields	
induced	by	the	lightning.		The	current	in	the	lightning	strike	flows	around	the	outside	of	the	car	to	
ground.		The	passengers	inside	the	car	can	be	in	contact	with	the	inside	of	the	car	with	no	ill	effects,	
but	should	not	stick	their	hands	out	an	open	window.		

22.14. Since	lightning	can	strike	the	tree	and	have	the	current	flow	through	the	wet	tree,	the	current	would	
jump	to	any	object	near	the	tree.		To	avoid	lightning,	go	inside	the	house	or	a	car.		If	I	were	outside,	I	
would	go	to	a	low	place	and	avoid	trees	or	tall	buildings.		I	should	not	lie	down	on	the	ground	since	
the	current	can	flow	along	the	surface	of	the	Earth.		

22.15. If	 electric	 field	 lines	 crossed,	 there	would	be	a	 charge	at	 the	 crossing	point.	 	 It	 is	known	 that	 the	
electric	field	lines	extend	away	from	a	positive	change	and	the	lines	terminate	at	a	negative	charge.		
If	in	the	vicinity	of	the	crossing	point	there	is	no	charge,	then	the	lines	cannot	cross.		Moreover,	if	we	
put	 a	 test	 charge	 on	 the	 crossing	 point,	 there	 would	 be	 two	 directions	 of	 the	 force;	 this	 is	 not	
possible;	therefore	the	lines	cannot	cross.	

22.16. The	net	flux	through	a	closed	surface	is	proportional	to	the	net	flux	penetrating	the	surface,	that	is,	
the	flux	leaving	the	volume	minus	the	flux	entering	the	volume.	This	means	that	if	there	is	a	charge	
within	a	surface,	the	flux	due	to	the	charge	will	only	exit	through	the	surface	creating	a	net	flux	no	
matter	where	the	charge	 is	 located	within	the	surface.	 	 If	a	charge	moves	 just	outside	the	surface,	
then	 the	 net	 flux	 crossing	 the	 surface	would	 be	 zero	 since	 the	 flux	 entering	 the	 volume	must	 be	
equal	to	the	flux	leaving	the	volume	as	shown	in	the	figure:		

	
	
	
	

22.17. Because	of	the	spherical	symmetry	of	this	problem,		Gauss’s	Law	can	be	used	to	determine	electric	
fields.	The	image	below	shows	a	cross‐section	of	the	nested	spheres:	
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	 Gauss’s	Law	is	applied	on	four	surfaces,	G1 , G2 , G3 	and	G4 	as	shown	in	the	figure.	

	 ሺaሻ	In	the	region	 1 < ,r r the	electric	field	is	zero	because	it	is	inside	the	conducting	sphere.		

ሺbሻ	 Applying	 Gauss’s	 Law	 on	 the	 surface	 G2 	 gives	 the	 electric	 field	 in	 the	 region	 1 2 ,r r r  	 i.e.,	

 2
04 3 /E r Q  	or	  E 3Q / 40r

2 . 	

ሺcሻ	In	the	region	 r2 r  r3 , 	the	electric	field	is	zero	since	it	is	inside	a	conductor.	

ሺdሻ	 In	 the	 region	   r  r3 , 	 using	Gauss’s	Law	yields	  2
04 3 / .E r Q  	Therefore,	 the	electric	 field	 is	

  E 3Q / 40r
2 . 	

22.18. 	

	

ሺaሻ	If	you	are	very	close	to	the	rod,	the	electric	field	can	be	approximated	by	the	field	produced	by	a	
very	long	rod.	Then	 E 	is	proportional	to	the	linear	charge	density	and	to	1/ .r 	
ሺbሻ	If	you	are	a	few	centimeters	away	from	the	center,	the	rod’s	finite	length	becomes	relevant	and	
the	rod	can	be	treated	as	a	line	of	charge	with	finite	length,	as	in	Example	22.3.		
ሺcሻ	If	you	are	very	far	away,	then	the	electric	field	behaves	like	that	of	a	point	charge.	Therefore,	the	
field	is	proportional	to	the	total	charge	and	to	 21/ .r 	

22.19. 	

	
	

The	 total	 electric	 flux	 through	 a	 closed	 surface	 is	 equal	 to	 the	 net	 charge,	 encq ,	 divided	 by	 the	

constant 0 	 or	 enc 0net
 / .q  	 This	 is	 known	 as	 Gauss’s	 Law.	 	 The	 strength	 of	 a	 dipole	 is	 p qd. 	

Because	 the	 dipole	 is	 completely	 enclosed	 by	 the	 spherical	 surface,	 the	 enclosed	 charge	 will	 be	

  
qenc  q q  0. 		Thus	the	net	flux	through	the	closed	surface	will	be	zero.	

	

22.20. 	
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Consider	two	small	elements	 dx 	at	 x 	and	 x 	as	shown	in	the	above	figure.		Due	to	the	symmetry	of	
the	problem,	it	is	found	that	the	component	of	 1E 	in	the	y‐direction,	 1y ,E 	is	equal	in	magnitude,	but	

in	 the	opposite	direction,	 to	 the	y‐component	of	 2 .E 	Therefore,	only	 the	x‐components	of	electric	

fields	 contribute	 to	 the	 net	 field.	 	 Integrating	 over	 the	 length	 of	 wire	 yields	  a

20
0

2sin ˆ .
4

dq
E x

r




 


	

Using	 ,dq dx 	 it	 simplifies	 to	


 a

20
0

sin
.

2

x
E dq

r




 
   
 




	 Substituting	 2 2r x y  and	 sin /x r  	

yields	
 

a

3/20 2 2
0

ˆ
.

2

x xdx
E

x y




 
  
  




	Using	the	substitution	 2z x 	yields:	

     

   

2 2
2 1/2 1/2a 2 2

20
0 00 0 0

2 2

0

ˆ ˆ ˆ1
2 / 2 /

2 2 2 2

ˆ 1/ 1/ .
2

a ax dz x x
E z y z y

z y

x y a y

  
  




                                     

         




	

22.21. Since	 the	 conductor	has	 a	negative	 charge,	 this	means	 that	 the	 electric	 field	 lines	 are	 toward	 the	
conductor.	 	Electrons	 inside	 the	conductor	can	move	 freely	and	redistribute	 themselves	such	that	
the	repulsion	forces	between	electrons	are	minimized.	As	a	consequence	of	 this,	 the	electrons	are	
distributed	on	the	surface	of	the	conductor.			

	

22.22. St.	Elmo’s	Fire	is	a	form	of	corona	discharge;	the	same	phenomenon	whereby	lightning	rods	bleed	
off	accumulated	ground	charge	to	prevent	 lightening	strokes.	 	Lightning	rods	are	not	supposed	to	
conduct	a	lightning	strike	to	ground	except	as	a	last	resort.		In	stormy	weather,	a	ship	or	aircraft	can	
become	electrically	charged	by	air	friction.		The	charge	will	collect	at	the	sharp	edges	or	points	on	
the	 structure	 of	 the	 ship	 or	 plane	 because	 the	 electric	 field	 is	 concentrated	 in	 areas	 of	 high	
curvature.	 	 Sufficiently	 large	 fields	 ionize	 the	 air	 at	 these	 areas,	 as	 the	molecules	of	nitrogen	and	
oxygen	de‐ionize	they	give	off	energy	in	the	form	of	visible	light.		The	ghostly	glow	known	since	the	
days	of	“wooden	ships	and	iron	men”	is	St.	Elmo’s	Fire.			

22.23. Consider	the	surface	layer	of	charge	to	be	divided	into	two	component;	a	‘tile’	in	the	vicinity	of	some	
point,	and	the	‘rest’	of	the	charge	on	the	surface.		Seen	from	close	enough	to	the	given	point	on	the	
surface,	 the	 ‘tile’	 appears	as	a	 flat	plane	of	 charge.	 	Gauss’s	Law	applied	 to	 the	cylindrical	 surface	
pierced	 symmetrically	 by	 such	 a	 plane,	 implies	 that	 the	 ‘tile’	 produces	 an	 electric	 field	 with	 the	
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component	 0/ 2  perpendicularly	outward	from	the	surface	on	the	outside,	 inward	on	the	inside.		
But	Gauss’s	Law	applied	to	a	short	cylinder	ሺ‘pillbox’ሻ	partially	embedded	in	the	conductor,	implies	
that	 the	 entire	 charge	 layer	 produces	 an	 electric	 field	 with	 component	 /  	 perpendicularly	
outward	outside	the	surface,	and	zero	 inside.	 	To	yield	this	result,	 the	 ‘rest’	must	produce	electric	
field	 0/ 2 ,  	outward,	in	the	vicinity	of	the	‘tile’	inside	and	out.		It	is	this	electric	field	which	exerts	
force	 on	 the	 ‘tile’,	 carries	 charge	 per	 unit	 area	 . 	 Hence,	 every	 portion	 of	 the	 charge	 layer	

experiences	 outward	 force	per	unit	 area	 stress	 of	magnitude	 2
0/ 2 .   	Note	 that	 the	 outward	

direction	of	the	stress	is	independent	of	sign	of	 . 	

22.24. The	 net	 force	 on	 the	 dipole	 is	 zero,	 so	 there	 will	 be	 no	 translational	motion	 of	 dipole.	 	 The	 net	
torque;	however,	is	not	zero,	so	the	dipole	will	rotate.		With	the	force	on	the	positive	charge	to	the	
right	and	the	force	on	the	negative	charge	to	the	left,	the	dipole	will	rotate	counter‐clockwise.			
	

Exercises	

22.25. The	electric	field	produced	by	the	charge	is:		

  
 

9 2 2 9

22

8.99 10  N m /C 4.00 10  C
575.36 N/C 575 N/C.

0.250 m

kq
E

r

 
    	

22.26. 	

	
	The	electric	field	vector	will	be	         i

2 2 2
1 2 1 2

i

/ / / .E E kq r x kq r y k r q x q y    
 

	The	magnitude	

of	the	vector	is:		

 
   

9 2 2 2 2
2 2 2 2 9 9

2 2

8.99 10  N m /C
1.6 10  C 2.410 C 25.931 N/C 26 N/C.

1.0 m
x y x y

k
E E E q q

r
 

         


	

22.27. 	

	

	The	 electric	 field	 at	 the	 origin	 is	         


2 2
i 1 1 2 2

i

ˆ ˆ/ / .E E k q r x k q r y 	 The	 direction	 is	

 tan / .y xE E 		
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   
   

    
     
          
           

22 2
2 2 1 21 1 1 1

0 2 2 2
1 1 2 1

4.000 m 24.00 nC/
tan tan tan tan 12.53 .

/ 6.000 m 48.00 nC

y

x

E k q r r q

E k q r r q
	

The	electric	field	lies	in	the	3rd	quadrant	so	       0180.00 12.53 192.53 . 		Rounding	to	four	
significant	figures	gives	us  192.5 . 		

22.28. THINK:		The	electric	field	is	the	sum	of	the	fields	generated	by	the	two	charges	of	the	corner	triangle.		

The	 first	 charge	 is	 5
1 1.0 10  Cq    	 and	 is	 located	 at	   1 0.10 m .r y



	 The	 second	 charge	 is	
5

2 1.5 10  Cq   	located	at	   2 0.20 m .r x


		

SKETCH:			

	
RESEARCH:		The	electric	field	is	given	by	the	equation	  2/ .E kq r r



 	

SIMPLIFY:		      2 2
1 1 2 2/ / .E kq r y kq r x 



	The	magnitude	of	the	field	is		

2 2

2 2 1 2
2 2

1 2

,x y

q q
E E E k

r r

   
         

   



	

and	 has	 a	 direction	 	
2 2

1 1 11 2 2 1
2 2

1 2 1 2

tan tan tany

x

E q r r q

E r q r q
   

        
                    

	 where	  	 is	 in	 the	 second	

quadrant.	

CALCULATE:		  
   

2 2
5 5

9 2 2 6

2 2

1.0 10  C 1.5 10  C
8.99 10  N m /C 9.6013 10  N/C

0.100 m 0.200 m
E

             
   
   

	

   
   

2 5

1

2 5

0.200 m 1.0 10  C
tan 69.444

0.100 m 1.5 10  C









  


	or	 110.56 .   	

ROUND:	 	 The	 least	 precise	 value	 given	 in	 the	 question	 has	 two	 significant	 figures,	 so	 the	 answer	
should	 also	 be	 reported	 to	 two	 significant	 figures.	 	 The	 electric	 field	 produced	 at	 the	 corner	 is	

69.6 10  N/CE   	at	110 	from	the	x‐axis.		
DOUBLE‐CHECK:		Dimensional	analysis	confirms	the	answer	is	in	the	correct	units.	

22.29. THINK:		We	want	to	find	out	where	the	combined	electric	field	from	two	point	charges	can	be	zero.	
Since	the	electric	field	falls	off	as	the	inverse	second	power	of	the	distance	to	the	charge,	and	since	
both	charges	are	on	the	x‐axis,	only	points	on	the	same	line	have	any	chance	of	canceling	the	electric	
field	from	these	two	charges,	resulting	in	a	net	zero	electric	field.	The	first	charge,	 1 5.0 Cq  ,	 is	at	

the	 origin.	 The	 second	 charge,	 2 3.0 Cq   ,	 is	 at	 1.0 m.x  Consider	 where	 along	 the	 x‐axis	 it	 is	
possible	to	have	zero	electric	field.	On	the	sketch	we	have	marked	three	regions	ሺI,	II,	and	IIIሻ.		If	we	
place	a	positive	charge	anywhere	in	region	II,	the	5	C	will	repel	it	and	the	–3	C	will	attract	it,	so	that	
the	positive	charge	moves	to	the	right.		If	we	place	a	negative	charge	in	the	same	region,	it	will	move	
to	the	left.	So	we	know	that	the	electric	field	cannot	be	zero	anywhere	in	region	II.	Region	I	is	closer	
to	 the	 5	 C	 charge.	 Since	 this	 is	 also	 the	 charge	 with	 the	 larger	 magnitude,	 its	 electric	 field	 will	
dominate	 region	 I,	 and	 thus	 there	 is	no	place	 in	 region	 I	where	 the	electric	 field	 is	0.	This	 leaves	
region	III,	where	the	two	electric	fields	from	the	point	charges	can	cancel.	
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SKETCH:			

	
	

RESEARCH:	 	 The	 electric	 field	 due	 to	 the	 charge	 at	 the	 origin	 is	 E0  kq0 /x 2 . 	 The	 other	 charge	

produces	a	field	of	
  
E1  kq1 / x  x1 2 . 		

SIMPLIFY:	The	combined	electric	field	is	 E  kq0 /x 2  kq1 / x  x1 2 . 	Setting	the	electric	field	to	zero,	

solve	for	 :x 	

	

  

kq0

x 2 
kq1

x  x1 2
 0   

kq0

x 2  
kq1

x  x1 2
   x  x1 2 q0  x 2q1    x  x1 2 q0  x 2 q1 	

We	could	now	solve	the	resulting	quadratic	equation	blindly	and	would	obtain	two	solutions,	each	
of	which	we	would	have	to	evaluate	for	validity.	Instead,	we	can	make	use	of	the	thinking	we	have	
done	above.	In	the	last	step	we	used	the	fact	that	the	charge	at	the	origin	is	positive	and	the	other	is	
negative,	replacing	them	with	their	absolute	values.	Now	we	can	take	the	square	root	on	both	sides	
and	choose	the	positive	root,	leaving	us	with	

  1 0

1 0 1

0 1

 
x q

x x q x q x
q q

   


	

CALCULATE:		
 1.00 m 5.00 C

4.43649 m
5.00 C 3.00 C

x  


	

ROUND:	 	 The	 positions	 are	 reported	 to	 three	 significant	 figures.	 	 The	 electric	 field	 is	 zero	 at	
4.44 m.x  	

DOUBLE‐CHECK:		This	is	a	case	where	we	can	simply	insert	our	result	and	verify	that	it	does	what	it	
is	supposed	to:	  E(x=4.4 m)  k(5 C)/(4.4 m)2  k(3 C)/(4.4 m 1 m)2  0 .	

22.30. THINK:	Let’s	fix	the	coordinate	notation	first.		The	charges	are	located	at	points	ሺ0,dሻ,	ሺ0,0ሻ,	and	ሺ0,‐
dሻ	on	the	y‐axis,	and	the	point	P	is	P	ൌ	ሺx,0ሻ.	In	order	to	specify	the	electric	field	at	a	point	in	space,	
we	 need	 to	 specify	 the	 magnitude	 and	 the	 direction.	 Lets	 first	 think	 about	 the	 direction.	 The	
distribution	 of	 the	 charges	 is	 symmetric	 with	 respect	 to	 the	 x‐axis.	 Thus	 if	 we	 flip	 the	 charge	
distribution	 upside	 down,	we	 see	 the	 same	picture.	 	 This	means	 also	 that	we	 can	 do	 this	 for	 the	
electric	field	generated	by	these	charges.		Right	away	this	means	that	the	electric	field	anywhere	on	
the	x‐axis	cannot	have	a	y‐component	and	can	only	have	an	x‐component.	
SKETCH:	

	
RESEARCH:		The	electric	field	strength	is	given	by	 2/E kQ r ,	and	the	electric	fields	from	different	
charges	add	as	vectors.		We	need	to	add	the	x‐components	of	the	electric	fields	from	all	charges.		
They	are	ሺfrom	top	to	bottom	along	the	y‐axisሻ:	
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 

 

1 2 2

1, 3/22 2 2 2 2 2

2, 2

3 1 2 2

3, 1, 3/22 2

cos

2

x

x

x x

kq
E

d x
kq kqxx

E E
d x d x d x

kq
E

x
kq

E E
d x

kqx
E E

d x







 

  
  




 




 


	

SIMPLIFY:	All	we	have	to	do	is	add	the	individual	x‐components	to	find	our	expression	for	the	x‐
component	of	the	electric	field	along	the	x‐axis:	

   1, 2, 3, 3/2 3/22 22 2 2 2

2 2 1
( ,0) 2x x x x

kq kqx x
E x E E E kq

x xd x d x

 
       
    

	

ሺThis	is	the	expression	for	x൐0;	for	x൏0	it	has	the	opposite	sign	so	that	it	always	points	away	from	
the	origin.ሻ	

	 CALCULATE:	Not	applicable.	
ROUND:	Not	applicable.	
DOUBLE‐CHECK:	For	 0x  	we	see	that	the	first	term	diverges	as	we	get	very	close	to	the	positive	
charge	at	the	origin,	which	is	as	expected.	
For	large	distances,	 ,  / 0,x d x  	we	expect	at	most	a	very	weak	electric	field	because	the	net	

charge	of	our	configuration	is	0.	We	can	factor	out	the	 21/x 	term	to	get	

 

3/223

3/2 3/22 2 222 2

2 2 21
( ,0) 1 1 1 1 .

1

x

kq kq kqx d
E x

x x x xd x d

x



 
 

                                            

For	

 2 2/ 1,d x  the	binomial	expansion	gives	us

	3/22 2

2 2

3
1 1 .

2

d d

x x


 

   
  	

The	electric	field	then	simplifies	to	
22 2

2 2 2 2 4

2 2 33 3
( ,0) 1 1 .

2 2x

kq kq kqdd d
E x d

x x x x x

  
         

 	

Thus	the	electric	field	strength	of	this	configuration,	called	a	“quadrupole”,	falls	with	the	inverse	
fourth	power	of	the	distance	to	the	origin	for	large	distances.		ሺ…	as	compared	to	the	electric	field	
from	a	dipole,	which	falls	with	the	inverse	third	powerሻ.	

22.31. The	dipole	is	just	two	charges	fixed	together	of	opposite	sign.		The	electric	field	at	a	point	is	the	sum	
of	the	fields	produced	by	each	charge.		The	figure	indicates	that	the	electric	field	produced	is	created	
by	the	component	of	the	field	perpendicular	to	line	x.	
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iy 2y 1 2 22 2
22 2

2 sin
+ sin sin sin sin

22 2

kq kq kq
E E E E E

dd d xx x


   

  
     

                             

		

Note	that	
 2 2

sin .
2 / 2

d

d x
 


	This	means	the	field	is:		

        3/2 3/2 3/22 2 22 2 2

2
.

2 / 2 / 2 / 2

kqd kqd kp
E

d x d x d x

  
  

  
	

If	 x d 	then	 3/E kp x  .		The	field	along	the	axis	of	the	dipole	is	 32 / ,E kp x  	indicating	that	the	
field	strength	falls	off	more	rapidly	perpendicular	to	the	dipole	axis.	

22.32. THINK:		The	field	due	to	a	dipole	moment	at	a	point	h	along	the	x‐axis	is	 3( ) 2 /E h k qd h .		I	want	to	
find	the	point	perpendicular	to	the	x‐axis	as	measured	from	the	origin	ሺi.e.,	along	the	y‐axisሻ,	where	
the	electric	field	has	this	same	value.	
SKETCH:		

	

RESEARCH:	 	From	the	previous	problem,	the	electric	 field	along	the	y‐axis	 is	 	
 2

3/2
2

( ) .
/ 4

kqd
E l

d l



		

Set	 ( ) ( )E l E h 	and	solve	for	 l .	

SIMPLIFY:		
   

 2

2 2

2 2
3/2

2 3
43/2 3/23 3 32 2

4 4

(2 ) 2 1
    2   .

22
d

d d

k qd kqd h d
l h l

h hl l

              
   

	

CALCULATE:		Not	applicable.	

ROUND:		Not	applicable.	

DOUBLE‐CHECK:		According	to	this	expression,	l	will	always	be	less	than	h.		This	is	consistent	with	
the	previous	result	that	the	electric	field	strength	along	a	line	perpendicular	to	the	dipole	axis	falls	
off	more	rapidly	than	the	field	strength	along	the	dipole	axis.	

22.33. THINK:	 	 As	 the	 4.0 gm  	 ball	 falls	 the	 force	 of	 gravity	 acting	 on	 it	 will	 cause	 it	 to	 accelerate	
downwards.	 	 At	 the	 same	 time,	 the	 force	 due	 to	 the	 electric	 field	 acts	 on	 the	 ball	 causing	 it	 to	
accelerate	towards	the	east.		The	forces	act	perpendicular	to	each	other.		The	problem	is	solved	by	
finding	each	 component	of	 the	velocity.	 	 In	order	 to	 find	 the	velocity	due	 to	 the	electric	 field,	 the	
time	required	for	the	ball	to	travel	 30.0 cm 	downwards	is	needed.			
SKETCH:			
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RESEARCH:		The	velocity	in	the	downward	direction	is	found	using	 2 2
0 2 .y yv v gdy  	The	time	it	takes	

to	 reach	 this	 velocity	 / .yt v g 	 The	 acceleration	 eastward	 is	 calculated	 using	 .F ma qE  	 The	

velocity	is	then	 .x xv a t 	

SIMPLIFY:	 	The	y‐component	of	 the	velocity	 is	 2yv gdy 	 because	 the	ball	 starts	 from	rest.	 	The	

time	it	takes	for	the	ball	to	fall	 30.0 cm 	is	 2 / .t gdy g 	The	acceleration	eastward	is	 / .a qE m 	The	

velocity	eastward	is	
2 2

.x x x

gdyqE qE dy
v a t v

m g m g
     
 

	

CALCULATE:		
  
vy  2 9.81 m/s2  0.300 m  2.4261 m/s 	downward	

3

2

12 N/C 0.300 m
5.0 10  C 2 3.7096 m/s

0.0040 kg 9.81 m/s
xv         

  
	eastward	

ROUND:	 The	 velocity	 is	 report	 to	 three	 significant	 figures.	 The	 ball	 reaches	 a	 velocity	 of	
   ˆ ˆ3.71 m/s 2.43 m/s .x y 	

DOUBLE‐CHECK:		This	is	a	reasonable	answer	considering	the	size	of	the	values	given	in	the	
question.	

22.34. THINK:	A	line	of	charge	along	the	y‐axis	has	linear	charge	density	  	from	 0 to y y a   ,	and	  	
from	 0 to .y y a   	 I	want	to	 find	an	expression	for	 the	electric	 field	at	any	point	 x 	along	the	x‐
axis.		It	is	noted	that	the	charge	configuration	is	similar	in	structure	to	a	dipole.		By	symmetry,	the	x‐
components	of	the	field	cancel	out,	and	the	net	field	is	in	the	y‐direction.			
SKETCH:			

	
RESEARCH:		The	electric	field	resulting	from	a	charge	distribution	is	the	integral	over	the	differential	
charge:	 2/ .dE kdq r 	 The	 y‐component	 of	 the	 field	 is	 2sin / ,ydE kdq r 	 where	  	 is	 the	 angle	

between	 the	 electric	 field	 produced	 by	 dq 	 and	 the	 y‐axis.	 	 Also,	 2 2 ,r x y  	 sin / .y r  	 From	

0 to ,  ,a dq dy and	from	 0 to ,  .a dq dy   	

SIMPLIFY:		
 , 2 2 2 3/22 2 2 2

siny

kdq k dy y k ydy
dE dE

r x y x y x y

 
 

            
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 
 , 2 2 2 3/22 2 2 2

siny

kdq k dy y k ydy
dE dE

r x y x y x y

 
 

               
	

The	field	due	to	the	positive	charge	distribution	is:	
   + 3/2 3/20 02 2 2 2

.
a ak ydy ydy

E k
x y x y


 

 
  	Similarly,	

the	field	due	to	the	negative	charge	distribution	is:		
   3/2 3/20 02 2 2 2

.
a ak ydy ydy

E k
x y x y




 

  
 

  			

	 CALCULATE:		Let	 2 2u x y  	then	 2du ydy 	then:	

	    
1/2

2 23/2 1/2 1/2 1/20 2 2
00 0

2 1 1
,

2 2

aa a
a kk du k k

E k
x y xu u u x a

   

                          
 	and	

    
1/22 23/2 1/2 1/2 1/20 220 0

2 1 1
.

2 2

aa
a kk du k k

E k
x y xu u u x a

   






 
                          

 

 	 The	 total	

electric	field	at	 x 	is:		
 + - 1/22 2

1 1
+ 2 .E E E k

xx a

 
      

	

ROUND:		Not	applicable.	
DOUBLE	CHECK:		The	electric	field	decreases	inversely	proportionally	to	the	distance	from	the	wire,	
as	expected.	

22.35. THINK:	 	A	semicircular	 rod	carries	a	uniform	charge	of	൅Q	along	 its	upper	half,	 and	–Q	along	 it’s	
lower	half.		I	want	to	determine	the	magnitude	and	direction	of	the	electric	field	at	the	center	of	the	
semicircle.	 	 The	 rod	 has	 a	 length	 of	 .L R 	 The	 charge	 density	 of	 the	 upper	 half	 of	 the	 rod	 is	

 / / 1/ 2 2 / .Q L Q R Q R     	Similarly,	the	lower	half	of	the	rod	is	 2 / .Q R   	

SKETCH:	

	
RESEARCH:	 From	 the	 symmetry	 of	 the	 semi‐circle,	 the	 x‐components	 of	 the	 field	 cancel,	 and	 the		
resulting	electric	field	only	has	a	y‐component.		The	y‐component	of	the	electric	field	for	the	upper	
segment	of	the	rod	is	given	by		

   2 2
+y cos / cos / cosdE dE kdq R k dx R        ,	

where	 .dx Rd 		Therefore,	  2
, / cos cos / .ydE k Rd R k d R          	
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SIMPLIFY:		Integrating	both	sides	with	respect	to	θ	gives:	

        /2 /2 2
+y 00

/ cos / sin | / 1 0 / 2 / .dE k R d k R k R k R k Q R
                   	

The	lower	half	of	the	semicircle	also	contributes	the	same	y‐component.	 	The	total	electric	field	at	
the	origin	is		

  

  

2 2 2 2+ -
0 0

4 4
+ 2 .

4y y y y y y

kQ Q Q
E E E E y y y

R R R    
                    



		

	 CALCULATE:		Not	applicable.	
	 ROUND:		Not	applicable.		
	 DOUBLE	CHECK:		The	resulting	field	points	in	the	direction	from	the	positive	charge	to	the	negative	

charge,	as	required.	

22.36. THINK:	 Two	 semicircular	 rods,	 with	 uniformly	 distributed	 charges	 of	 1.00 μC  and 1.00 μC,  	
respectively,	form	a	circle	of	radius	 10.0 cm.r  	 	 I	want	to	determine	the	magnitude	and	direction	
on	the	electric	field	at	the	center	of	the	circle.	
SKETCH:			

	
RESEARCH:	 The	 charge	 densities	 of	 the	 positively	 charged	 and	 negatively	 charged	 rods	 are	

/  and - / ,Q R Q R       	 respectively.	The	differential	element	of	 the	electric	 field	 is	given	by	
2/ ,dE kdq R 	where	the	differential	element	of	charge	along	the	line	is	 .dq dx Rd    	 	It	is	also	

necessary	to	consider	the	x‐	and	y‐components	of	the	differential	elements.	

SIMPLIFY:	 , 2 2 3 2

sin sin sin sin
x

k dx k d kQRd kQ d
dE

R R R R

        
      .	 Similarly,	 , 2

cos
;y

kQ d
dE

R

 
  	

, ,2 2

sin cos
;  .x y

kQ d kQ d
dE dE

R R

   
  

 
  	Integrating	both	sides	of	each	expression	gives:	

 

 

 

 

, 2 2 200

, 2 2 00

2 2

, 2 2 2

2 2

, 2 2

2
sin cos

cos sin 0

2
sin cos

cos sin 0

x

y

x

y

kQ kQ kQ
E d

R R R
kQ kQ

E d
R R
kQ kQ kQ

E d
R R R

kQ kQ
E d

R R

 

 

 



 



  
  

  
 

  
  

  
 









   

  

     

    









	

The	total	electric	field	at	the	center	is	given	by:	 , , , , 2 2 2

2 2 4
0 0 .x y x y

kQ kQ kQ
E E E E E

R R R              	
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CALCULATE:		
  

 

9 2 2 6

6

2

4 8.99 10  N m /C 1.00 10  C
1.1446 10  N/C

0.100 m
E



 
   	

ROUND:	The	electric	field	is	reported	to	three	significant	figures:	 	 61.14 10  N/C.E   	Because	all	of	
the	y‐	components	are	zero,	the	resultant	field	is	in	the	positive	x‐direction.	
DOUBLE‐CHECK:		Given	the	symmetry	of	the	charge	configuration,	this	is	a	reasonable	result.			

22.37. THINK:		The	charge	Q	is	uniformly	distributed	along	the	rod	of	length	L.		The	rod	has	linear	charge	
density	 / .Q L  	 	 The	 electric	 field	 at	 a	position	x	ൌ	d	 can	be	 calculated	by	 integrating	over	 the	
differential	 electric	 field	 due	 to	 the	 differential	 charge	 on	 the	 rod.	 	 The	 electric	 field	 differential	

2/ ,dE kdq r 	where		the	differential	is	along	the	y‐axis,	and	 2 2 .R d y  		The	x‐	and	y‐components	
of	 the	 field	must	be	 considered	 individually.	The	x‐component	of	 the	 field	differential	 is	 given	by	

cos ,xdE dE  	and	the	y‐component	is	given	by	 sin .ydE dE  	

SKETCH:	

	

SIMPLIFY:		
 2 2 2 2

2 2
cos cos cos cosx

k dy kQdy kQdykdQ
dE

R R LR L d y


      


	

   

   

2 3/22 2 2 22 2 2 2

2 3/22 22 2 2 2

cos   

sin ;  sin   

x

y y

kQdy kdQdyd d d
dE

R d y d yL d y L d y

kQdy y y ykQdy
dE dE

R d yL d y L d y



 

  
      
       

    
 

	

Integrate	both	expressions.	

   

   

3/2 3/2 2 2 20 02 2 2 2
0

2 23/2 3/20 02 2 2 2
0

1

1

L
L L

x

L
L L

y

ydkQdy dkQ kQd
E dy

L L d d yL d y d y

ykQdy ykQ kQ
E dy

L L d yL d y d y

 
    

    

 
    

    

 

 
	

ˆ ˆ( ) x yE d E x E y 


	

CALCULATE:		
2 2 2 2 2 2 2 2

0

0

L

x

ykQd kQd L kQ
E

L Ld d y d d L d d L

   
            
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2 2 2 2 2 2
0

1 1 1
L

y

kQ kQ kQ kQ
E

L L d dLd y d L L d L

    
             

2 2 2 2
ˆ ˆ( )

kQ kQ kQ
E d x y

dLd d L L d L

   
            



	

ROUND:		Not	applicable.	
DOUBLE	CHECK:		The	magnitude	of	the	electric	field	decreases	as	d	increases,	as	expected.	

22.38. THINK:	A	wire	bent	into	an	arc	of	radius	R	and	carrying	a	uniformly	distributed	charge	Q	will	have	a	
linear	charge	density	of	 / 2 .Q R  	By	the	symmetry	of	the	charge	distribution,	the	y‐components	
cancel,	and	only	the	x‐component	of	the	charge	contributes	to	the	electric	field.	
SKETCH:	

	
RESEARCH:	 An	 electric	 field	 produced	 by	 an	 infinitesimal	 segment	 of	 the	 arc	 is	

2 2 2/ / / / .dE k dq R k dx R k Rd R k d R        	 The	 total	 electric	 field	 can	 be	 calculated	 by	

integrating	over	 the	differential	 elements	of	 the	 field.	 	 Since	 the	 y‐component	of	 the	 field	 is	 zero,	

cos .x

k d
E E

R









   	

SIMPLIFY:		

  

  

2

2

2 2

2

cos cos cos sin sin sin
2 2 2

sin
sin sin

2

k k kQ kQ kQ
E d d d

R R R R R

kQ kQ

R R


  

  


   
  

 
 

  


 
              

 

  

  
	

CALCULATE:			

	
ROUND:		Not	applicable.	
DOUBLE	 CHECK:	 	 As	 0  	 the	 field	 is	 the	 same	 as	 that	 of	 a	 point	 charge,	 because	

0 2 2 0 2

sin sin
lim lim .

kQ kQ kQ

R R R 

 
 

  The	field	becomes	zero	as	the	point	is	symmetrically	enclosed	by	a	

ring	of	charge.			

22.39. THINK:		The	washer	will	create	an	electric	field	that	should	be	not	to	different	from	the	electric	field	
of	the	thin	ring	of	charge	we	encountered	 in	Solved	Problem	22.1.	 	The	washer	has	a	total	charge	

7.00 nC,Q  	with	inner	and	outer	radius	of	the	washer	are	 ri  2.00 cm 	and	  ro  5.0 cm. 	The	electric	

field	at	 o 30.0 cmz  	away	from	the	center	of	the	washers	is	desired.		
SKETCH:			
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RESEARCH:		The	surface	density	is	 /Q A  	where	the	area	is	  2 2

o i .A r r  	The	field	will	point	in	

along	the	z‐axis	due	to	symmetry.		The	field	due	to	a	segment	is	 2/ .dE kdq R 	The	distance	from	the	

segment	of	charges	is	 2 2
oR x z  	and	 2 2

o ocos / .z x z   	

SIMPLIFY:		
     

o o o

i i i

2 2 oo o
2 3 3/23 2 2 2 2o o 2 2

o i o i o

2
cos .

r r r

r r r

kQz x dxd x dxk dAz kQzkdq
E

R R R r r r r x z

   


 
   

  
      		Evaluating	

the	single	integral	gives:		

         
o

i

o o o
2 2 1/2 1/22 2 2 2 2 2 2 2 2 22 2 2 2

oo i o i o i i o o oo o i o

12 2 21 1 1 1
.

r

r

kQz kQz kQz
E

x zr r r r r r r z r zr z r z

                             

	

CALCULATE:		

   
           

9 2 9

2 2

2

2 2 2 2

2 8.99 10  N m /C 7.00 10  C 0.300 m 1 1 1

m0.0500 m 0.0200 m 0.0200 0.300 0.0500 0.300

682.715 N / C

E
           



	

ROUND:	 The	 values	 are	 given	 to	 three	 significant	 figures.	 	 The	 electric	 field	 is	   E  6.83102  N / C 	
pointing	towards	the	positive	z‐axis.			

DOUBLE‐CHECK:		In	Solved	Problem	22.1	we	found	for	the	thin	ring:	  3/22 2
o 0/E kQz r z  .	Using	the	

average	of	our	outer	and	inner	radius	we	then	find	from	this	formula:	

   
   

29 2 9

2 2 3/2

8.99 10  N m /C 7.00 10  C 0.300 m
685.2 N / C

( 0.0350 m 0.300 m )
E

 
 


	

Since	this	 is	 fairly	close	to	our	result	 for	a	ring	with	finite	thickness,	we	have	added	confidence	in	
our	result.	

22.40. The	force	on	the	particle	is	 .F qE 	The	charge	is	 2q e  	so	the	force	is		

  19 3 152 2 1.60 10  C 10.0 10  N / C 3.20 10  N.F qE eE            	

22.41. The	torque	due	to	the	field	is		

    15 3 3

15

sin sin 5.00 10  C 0.400 10  m 2.00 10  N / C sin60.0

3.46 10  N m.

p E pE qdE    



        

 

  

	

22.42. The	maximum	 torque	 occurs	 when	 the	 dipole	 is	 perpendicular	 to	 the	 field.	 	 The	 electric	 field	 is	

    30 28sin 1.05 D 3.34 10  C m/D 160.0 N/C sin90 5.61 10  N m.p E pE          
 

	

	

22.43. The	force	acting	on	the	electron	is	 .F ma qE  	The	acceleration	is	then	 / .a qE m 	Assuming	the	
electron	is	moving	in	the	same	direction	as	the	electric	field,	the	acceleration	will	oppose	the	
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motion.		The	velocity	is	given	by	 2 2 2 2
0 0 0

2
2 2 .

qE eEx
v v ax v x v

m m
       
 

	Solving	this	equation	for	x:	

2 2
0

2
and 0

eE
x v v v

m
     
 

,	therefore		
2
0 .

2

mv
x

eE
 	The	distance	traveled	is	

  
  

231 6

19

9.109 10  kg 27.5 10  m / s
0.1885 m.

2 1.602 10  C 11,400 N / C
x





 
 


	

To	three	significant	figures,	the	electron	travels	0.189	m	before	it	stops.			

22.44. The	 dipole	 moment	 is	 19 9 28 28(1.602 10 C)(0.680 10 m) 1.089 10 C m 1.09 10 C m.p qd ed             	

The	torque	experienced	by	the	dipole	is		

   28 3 25E Esin Esin 1.089 10 Cm 4.40 10  N / C sin 45 3.39 10  N m.p p ed             
 

	

22.45. THINK:		The	net	force	on	falling	object	in	an	electric	field	is	the	sum	of	the	force	due	to	gravity	and	
the	force	due	to	the	electric	field.		If	the	falling	object	carries	a	positive	charge,	then	the	force	on	the	
object	due	to	the	electric	field	acts	in	the	direction	opposite	to	the	force	of	gravity.	
SKETCH:	

	

RESEARCH:	 	 The	 net	 upward	 force	 acting	 on	 the	 object	 is	 g .eF F F QE Mg Ma     This	

corresponds	to	a	downward	acceleration	of	 .
QE

a g
M

  	Recall	that	the	speed	of	an	object	in	free	fall	

is	given	by	 2 2
0 2 2 .fv v a y v ah     		

SIMPLIFY:			

ሺaሻ	  
2

2     2 /
2

v QE
v ah a g v h g QE M

h M
        	

ሺbሻ		If	the	value	 /g QE M 	is	less	than	zero,	then	the	argument	of	the	square	root	is	negative.		This	
means	the	value	is	non‐real	and	the	body	does	not	fall.			
CALCULATE:		Not	applicable.	
ROUND:		Not	applicable.	
DOUBLE	CHECK:		Dimensional	analysis	confirms	that	the	units	of	the	expression	reduce	to	m/s,	the	
correct	units	for	velocity.	

22.46. THINK:		The	force	in	between	the	charge	and	the	dipole	moment	is	equal	to	the	force	acting	on	each	
pole	 of	 the	 dipole.	 	 The	 dipole	moment	 is	 306.20 10  C mp   	 and	 is	 1.00 cmr  	 from	 the	 charge	

1.00 μC.Q  		
SKETCH:			

	
	

RESEARCH:	 	 The	 force	 due	 to	 an	 electric	 field	 is	  ,F qE r
 

	 where	 the	 electric	 field	 is	

   2/ .E r kQ r r  	
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SIMPLIFY:		The	total	force	is	    .F qE r r qE r  
  

	From	the	fundamental	theorem	of	calculus,	

2 3 3

22ˆ ˆ ˆ( )
kpQd d kQ

F q r E r p r pkQ r r
dr dr r r r


     

 



	

CALCULATE:		
   

 

9 2 30 6

19

3

2 8.99 10  N m / C 6.2 10  C m 1.00 10  C
ˆ 1.11476 10  N

0.0100 m
F r

 


   

   	

ROUND:		The	force	is	reported	to	3	significant	figures.	
ሺaሻ		The	force	between	the	dipole	and	the	charge	is	 191.11 10  N. 	
ሺbሻ	The	molecule	is	attracted	to	the	charge	regardless	of	the	sign	of	the	charge.		This	occurs	because	
the	charge	of	opposite	sign	on	the	dipole	will	move	closer	to	the	charge	creating	an	attractive	force.	
DOUBLE‐CHECK:	 	 The	mass	 of	 a	 water	molecule	 is	 263.01 10  kg, 	 meaning	 the	 force	 is	 relatively	
large.		To	view	a	dipole	attracted	to	a	charge,	place	a	charged	rod	or	comb	near	running	water	from	
a	faucet.		

22.47. THINK:	 Assuming	 that	 the	 wire	 is	 made	 of	 a	 conducting	material,	 the	 charges	will	 be	 uniformly	
distributed	over	 its	 length.	 	The	wire	will	produce	an	electric	 field.	 	This	 field	 in	 turn	produces	a	
force	on	a	proton,	causing	the	proton	to	accelerate.		The	wire	has	a	length	of	 1.33 mL  	and	a	total	

charge	of	 63.05 10 .Q e   	The	proton	is	 0.401 mx  	away	from	the	center	of	the	wire.		
SKETCH:			

	
RESEARCH:	 	The	linear	density	of	the	wire	is	 / .Q L  	Due	to	the	symmetry	around	the	center	of	
the	wire	the	field	produced	is	only	along	the	x‐axis.		The	electric	field	due	to	a	segment	of	charge	is	

 2/ cos .dE kdq R  	The	distance	from	the	charge	to	the	segment	of	 the	wire	 is	 2 2 .R x y  	The	

force	on	the	proton	is	  .F ma qE r  	

SIMPLIFY:		The	electric	field	is:	

 

       

/2
/2 /2

2 2 23/22 2/2 /2 2 2
/2

1/2 1/2 1/2 1/22 2 2 2 2 2 2 2

cos

/ 2 / 2

/ 4 / 4 / 4 / 4

L
L L

L L
L

yk dq k dy dyx
E k x k x

x x yR R R x y

k k L k QL L

x x L x L x x L x x L


  

 

 


              

               

  
	

The	acceleration	of	the	proton	is	
 1/2

2 2

E
.

/ 4

q k q Q
a

m mx x L
 


	

CALCULATE:	
    

   

9 2 6 19

1/22 2

8.99 10  N m / C 3.05 10 1.602 10  C
0.0141062 N/C

0.401 m 0.401 m 1.33 / 4
E

   
 

   

	

 
19

2
27

1.602 10  C
0.0141062 N/C 1,351,561 m/s

1.672 10  kg
a






 


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ROUND:		The	values	are	reported	to	3	significant	figures.		
ሺaሻ The	electric	field	produced	by	the	wire	at	 0.401 m 	from	its	center	is	0.0141 N/C. 	

ሺbሻ The	acceleration	of	the	proton	is	 6 21.35 10  m/s . 	
ሺcሻ The	force	is	attractive	since	the	wire	is	negatively	charged	and	the	proton	is	positively	charged.		
The	force	points	towards	the	wire.	
DOUBLE‐CHECK:		These	are	reasonable	answers	with	appropriate	units.			

22.48. The	flux	through	a	Gaussian	surface	is	the	sum	of	the	total	charges	within	the	surface	divided	by	the	
permittivity	of	free	space	 0 . 	        i 0 03 2 7 / 3 / .Q q q q q q



           	

22.49. The	sum	of	the	flux	through	each	surface	is	equal	to	the	charge	enclose	divided	by	 0 . 	 0/ .i
i

Q   	

The	charge	is	then		

   12 2 2 2
0

8 8

8.85 10  C / N m 70.0 300.0 300.0 300.0 400.0 500.0  N m

1.124 10  C 1.12 10  C.

i
i

Q  

 

         

     


	

22.50. THINK:	 	The	first	Gaussian	surface	 is	a	sphere	with	radius	r	ൌ	R	൅	0.00.0000010	m.	 	This	surface	
encloses	all	the	charge	on	the	sphere.		The	second	Gaussian	surface	is	a	small,	right	cylinder,	whose	
axis	is	perpendicular	to	the	surface	of	the	sphere	and	penetrates	the	surface.		Taking	the	cylinder	to	
be	small	compared	to	the	sphere,	we	can	consider	the	surface	of	the	sphere	to	be	locally	flat.	 	The	
charge	density	on	the	surface	of	the	sphere	will	be	the	total	charge	divided	by	the	surface	area	of	the	
sphere.		For	this	case,	the	electric	field	is	constant	outside	the	sphere	and	zero	inside	the	sphere.	

	 SKETCH:		The	sketch	shows	the	two	Gaussian	surfaces.		 	
ሺaሻ	shows	the	spherical	surface	 	
ሺbሻ	shows	the	small,	right	cylindrical	surface.	

	
	
	 RESEARCH:	 	 For	 the	 spherical	 Gaussian	 surface,	 the	 electric	 field	 just	 outside	 the	 surface	 of	 the	

sphere	is	the	same	as	a	point	charge,	so	the	electric	field	is	radial	and	perpendicular	to	the	Gaussian	

surface.	So	we	have	  2

0

4 .
q

E dA E r


   






We	choose	a	very	small	right	cylinder	so	that	

the	 surface	 of	 the	 sphere	 is	 locally	 flat	 as	 show	 in	 the	 sketch.	 	 In	 this	 case,	 the	 electric	 field	 is	

perpendicular	 to	 surface.	 	 The	 charge	 density	 is	
2

.
4

q

R



 	 The	 electric	 field	 is	 parallel	 to	 the	

sides	 of	 the	 cylinder	 and	 perpendicular	 to	 the	 ends	 of	 the	 cylinder.	 	 So	 we	 have	

inside outside
0 0

.
q A

E dA E A E A


 
     







	The	electric	field	inside	the	sphere	is	zero.	
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	 SIMPLIFY:	 	 For	 the	 spherical	 surface,	 the	 electric	 field	 is	
  22

0

.
4

q q
E k

rr 
  	

For	the	cylindrical	surface,	the	electric	field	is	 E
outside





0



q

4R2


0

 k
q

R2
.	

	
CALCULATE:	 	 In	 this	 case,	 	 	 is	 very	 close	 to	 ,	 so	 the	 answer	 for	 both	 cases	 is	

 
 

6
9 2 2 6

22

6.1 10  C
8.99 10  N m / C 2.44373 10  N/C.

0.15 m

q
E k

R


      The	 charge	 is	 positive	 so	

the	field	points	outward	from	the	surface	of	the	sphere.	

ROUND:		We	round	the	magnitude	of	the	electric	field	to	two	significant	figures	 E  2.4 106 N/C. 
DOUBLE‐CHECK:	The	units	are	correct	for	an	electric	field.		The	rather	high	magnitude	results	from	
the	 fact	 that	 field	 is	calculated	very	close	 to	 the	surface	of	 the	charged	sphere.	 	Our	result	 for	 the	
small	 right	 cylindrical	Gaussian	 surface	 in	only	 correct	very	 close	 to	 the	surface	of	 the	 sphere,	 so	
that	the	surface	can	considered	locally	flat.	

22.51. The	cube	does	not	contain	any	charges,	thus	the	total	flux	must	be	zero.		
  0,A B C D E F i

i

A E E E E E E        	and	therefore,		

 
 15.0 N/C 20.0 N/C 10.0 N/C 25.0 N/C 20.0 N/C

60 N/C.

F A B C D EE E E E E E     

      

 

	

The	field	on	the	face	F	is	 60.0 N/C 	into	the	face	of	the	cube.	

22.52. 	

	

The	charge	inside	the	sphere	induces	a	charge	of	 3e 	on	the	inside	surface	of	the	sphere.		The	 3e 	
charge	must	come	from	somewhere.		In	this	case	the	 3e 	charge	is	removed	from	the	outer	surface	
charge.		The	outer	surface	charge	is	then	 2 .e 	The	total	charge	within	the	material	of	the	sphere	is	

5 .e 	

22.53. Gauss’s	 Law	 states	 that	
0

.encq
E dA


  	 The	 integral	 over	 the	 sphere	 gives	

2 enc
2

0 0

4 .
4

encq q
E dA EA E R E

R


  
        	 The	 electric	 field	 outside	 a	 uniform	 distribution	 of	

charge	is	identical	to	the	field	created	by	a	point	charge	of	the	same	magnitude,	located	at	the	center	
of	the	distribution.		Since	the	radius	of	the	balloon	never	reaches	 ,R 	the	charge	enclosed	is	constant	
and	the	electric	field	does	not	change.		

22.54. THINK:	The	charges	on	the	surface	of	the	shell	may	be	found	using	Gauss’s	Law.		The	inner	and	outer	
radii	of	the	shell	are	 i 8.00 cmr  	and	 o 10.0 cmr  	respectively.	The	electric	field	at	the	surface	of	the	
outer	 radius	 is	 80.0 N/C 	 pointing	 away	 from	 the	 center	 of	 the	 sphere.	 The	 electric	 field	 at	 the	
surface	 of	 the	 inner	 radius	 is	 80.0 N/C 	 and	 points	 towards	 the	 center	 of	 the	 sphere.	 	 Since	 the	
spherical	shell	does	not	produce	any	field	in	its	interior,	we	can	infer	that	there	is	a	negative	charge	
inside	the	hollow	portion,	equivalent	to	a	point	charge	at	the	center.	
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SKETCH:			

	
	

RESEARCH:		Gauss’s	Law	states	that enc

0

.e

q
E dA


    	

SIMPLIFY:	For	a	spherically	symmetric	electric	field,	the	charge	enclosed	within	a	Gaussian	sphere	

of	 radius	 R	 is	 given	 by	  2enc
0

0

4 .enc

q
E dA q E R 


    This	 gives	 the	 ሺnegativeሻ	 charge	 at	 the	

center	of	the	sphere.		Since	the	field	between	the	inner	and	outer	surfaces	of	the	shell	is	zero,	this	is	
also	equal	to	the	total	ሺpositiveሻ	surface	charge	at	the	inner	radius	of	the	conductor:	  2

i o i i4 .q E r  	

The	Gaussian	surface	around	the	whole	sphere	contains	the	charge	at	the	center	and	the	charge	of	
the	 shell.	 Since	 the	 charges	 at	 the	 center	 and	 on	 the	 inner	 surface	 are	 equal	 and	 opposite	 and	
therefore	cancel,	the	field	at	the	outer	surface	can	be	calculated	as	being	due	solely	to	the	charge	on	
the	outer	surface:	  2

o o o o4 .q E r  	

CALCULATE:		     
    

212 2 2 11
i

212 2 2 11
o

8.854 10  C / N m 80.0 N/C 4 0.0800 m 5.6966 10  C

8.854 10  C / N m 80.0 N/C 4 0.100 m 8.9010 10  C

q

q





 

 

   

   

	

ROUND:		Rounding	to	three	significant	figures,	the	inside	and	outside	total	charges	over	the	surface	
of	the	sphere	are	 115.70 10  C 	and	 118.90 10  C, 	respectively.	
DOUBLE‐CHECK:		These	are	reasonable	answers	with	appropriate	units.	As	you	would	expect,	given	
that	the	field	strength	is	the	same	inside	and	out,	the	ratio	of	the	charges	is	the	ratio	of	the	square	of	
the	radii:	 2 28 5.70 :81 .: 0 .90 	

22.55. THINK:	 	The	electric	 field	at	various	points	can	be	 found	using	Gauss’s	Law.	 	This	 law	can	also	be	
used	to	find	the	charge	on	the	outside	surface	of	the	conductor.	 	There	is	a	 6.00 nCq   	charge	at	

the	 center	 of	 the	 sphere.	 	 The	 shell	 has	 inner	 and	 outer	 radii	 of	 i 2.00 mr  	 and	 o 4.00 mr  	
respectively.		The	shell	has	a	total	charge	of	 7.00 nC.Q   	
	
	
	
SKETCH:			

	
	

RESEARCH:		Gauss’s	Law	states	that	 enc 0/ .EdA q 
 



	

SIMPLIFY:		The	electric	field	of	charges	with	spherical	symmetry	are	given	by	Gauss’	Law,	where	we	

take	spherical	Gaussian	surfaces:	  2 enc

0

4
q

E dA EA E r


   
 



	or	 enc
2

0

( ) .
4

q
E r

r




	The	electric	field	
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at	 1 ir r is	   enc
1 2

0 1

.
4

q
E r

r
 	 The	 electric	 field	 inside	 any	 conductor	 is	 always	 zero:	  2 0E r  	where	

i 2 o .r r r  	The	electric	field	outside	of	the	conductor	is	 3 o .r r 	   enc
3 2 2

0 3 0 3

.
4 4

q Q q
E r

r r 


  	Because	the	

field	inside	the	conductor	must	be	zero,	Gauss’s	Law	indicates	that	the	charge	at	the	center	of	the	

shell	is	equal	and	oppposite	to	the	charge	on	the	inside	of	the	shell:	   enc i
2 2 2

0 2 0 2

0
4 4 


  

q q q
E r

r r
	or	

i .q q  	The	charge	on	the	sphere	is	equal	to	the	sum	of	charges	on	the	inner	and	outer	surfaces	of	

the	shell	 i o .q q Q  	Thus,	the	outer	surface	charge	is	    2 2 2
o o i o o/ 4 / 4 / 4 .q r Q q r Q q r        		

CALCULATE:			

ሺaሻ	The	electric	field	at	 1 1.00 mr  	is	
   

9

1 212 2 2

6.00 10  C
53.951 N/C.

4 8.85 10  C / N m 1.00 m
E







 
  


			

ሺbሻ	The	electric	field	at	 2 3.00 mr  	is	 2 0 N/C.E  		

ሺcሻ	The	electric	field	at	 3 5.00 mr  	is	
 

   

9 9

212 2 2

7.00 10  C 6.00 10  C
0.3597 N/C.

4 8.85 10  C / N m 5.00 m
E



 



  
 


		

ሺdሻ	The	surface	charge	on	the	outside	part	of	the	shell	is		

 
 

9 9

12 2

2

7.00 10  C 6.00 10  C
4.974 10  C/m .

4 4.00 m




 


  

   	

ROUND:		All	the	values	have	an	accuracy	of		three	significant	figures.		
ሺaሻ The	electric	field	at	 1 1.00 mr  	is	 54.0 N/C. 	

ሺbሻ The	electric	field	at	 2 3.00 mr  	is	 0 N/C. 	

ሺcሻ The	electric	field	at	 3 5.00 mr  	is	 0.360 N/C. 	

ሺdሻ The	surface	density	on	the	outside	surface	is	 12 24.97 10  C/m . 	
DOUBLE‐CHECK:		These	are	reasonable	results.		

22.56. Inside	the	sphere	of	radius	 ,a the	charge	density	is	
 

tot tot
34 / 3

Q Q

V a



  and	is	zero	anywhere	else.		

Gauss’s	 Law	 states	 enc

0

.
q

E dA


 
 



	 The	 area	 of	 the	 Gaussian	 surface	 is	 always	 taken	 to	 be	

24A r and	 by	 spherical	 symmetry,	 the	 E‐field	 points	 radially.	 	 Thus,	 enc

0

q
E dA


 
 



	 gives	

enc enc enc
2 2

0 0

.
(4 )

q q kq
E r r r

A r r 
            

    
   	 If	 r a ,	 the	 enclosed	 charge	 is	 then	

3
3

enc 3 3

4

(4 / 3) 3

Q Qr
q V r

a a
 


    
 

	 and	
3

enc
2 3 2 3

kq kQr kQr
E r

r a r a
           

 .	 Otherwise,	 the	 surface	

encloses	 the	whole	charge	 .Q 	The	electric	 field	 is	 then
2

kQ
E r

r
   
 

 	 if	 .r a 	Note	 that	 this	behaves	

like	a	point	charge,	as	would	be	expected	once	outside	the	radius.	Below	is	a	graph	of  E r


.	
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22.57. Using	Gauss’s	Law	  2 Earth
E

0

4 .
q

E dA EA E r


    	Solving	for	the	charge	gives		

      22 12 2 2 3 5
Earth 0 Earth

5

4 8.85 10  C / N m 150. N/C 4 6371 10  m 6.7711 10  C

6.77 10  C.

q E r         

  
	

22.58. Let	 10.0 cm  be	 the	 radius	 of	 the	 solid	 sphere,	 the	 distance	 between	 the	 solid	 sphere	 and	 the	
inner	 part	 of	 the	 hollow	 sphere,	 and	 the	 thickness	 of	 the	 hollow	 sphere.	 Let	 15.0 cmPr  	 be	 the	

distance	from	the	center	to	the	point	P,	and	let	 35.0 cmQr  be	the	distance	from	the	center	to	the	

point	Q.	

	

ሺaሻ The	Gaussian	surface	at	 pr 	encloses	the	charge	on	the	inner	sphere.		   e2
1

0

nc4 .p

q
E r


 	The	charge	

on	the	inner	sphere	is		

    22 12 2 2 8
0 14 8.85 10  C / N m 4 10000 N/C 0.150 m 2.50 10  C 25.0 nC.pq E r            	

ሺbሻ For	the	electric	field	inside	the	shell	to	be	zero,	the	charge	on	the	inner	surface	of	the	shell	

must	be	equal	to	the	negative	of	the	charge	on	the	inner	sphere.		
 ienc

2 2
0 0

0
4 4

q qq
E

r r 


   	or	 i .q q  	

The	charge	on	the	inner	surface	of	the	shell	is	then	  i 25.0 nC 25.0 nC.q q      	

ሺcሻ	The	Gaussian	surface	at	 35.0 cmQr  	 from	the	center	encloses	the	inner	charge	and	the	charge	

on	the	shell:	    shell2 enc
2

0 0

4 Q

q qq
E r

 


  	or	 2
shell 0 24 .Qq q E r   	The	charge	on	the	shell	is	the	sum	of	

the	 charge	 on	 the	 inner	 and	 outer	 surfaces	 of	 the	 shell:	 shell i o .q q q  	 The	 charge	 on	 the	 outer	
surface	of	the	shell	is		

    

2
o shell i 0 2

21 2 742 2

( ) 4

8.85 10  C / N m 4 1.00 10  N/C 0.350 m 1.36 10  C= 0.136μC.

shell shell Qq q q q q q q E r 

 

       

    
	

22.59. 	
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The	 field	 due	 to	 either	 of	 the	 two	 sheets	 is	 found	 by	 taking	 a	 Gaussian	 cylinder	with	 top‐area	 A	

through	either	plane.	Then	
0 0 0

2 .
2

encQ A
E dA EA E

 
  

       	For	the	positively	charged	plate	

the	field	points	normally	away	from	it.		The	negatively	charged	plate	has	field	lines	pointing	towards	
it.	 	 Adding	 these	 fields	 together	 gives	 zero	 on	 the	 outside	 of	 the	 two	 plates,	 and	

0
0 0

2 2
2

E E
 
 

 
   

 
	within	the	two	plates,	directed	towards	the	negative	plate.		The	field	is		

 
  

6 2 2

5

12 2 2

1.00 10  C / m
1.13 10  N/C,

8.85 10  C / N m
E






  


	

and	 points	 from	 the	 positive	 plate	 to	 the	 negative	 plate.	 Therefore,	 the	 force	 an	 electron	 will	
experience	between	the	two	plates	is	given	by	

   
  

6 2 2

19 14 14

12 2 2

1.00 10  C / m
1.602 10  C 1.8107 10  N 1.81 10  N

8.85 10  C / N m
F qE eE


  




       


	

Since	the	E‐field	outside	the	plates	is	0,	the	electron	will	experience	no	force	outside	of	the	two	
plates.	

22.60. The	magnitude	of	an	electric	field	is	 31.23 10  N/C 	at	a	distance	 50.0 cm 	perpendicular	to	the	wire.		
The	direction	of	the	electric	field	is	pointing	toward	the	wire.		

	

Applying	Gauss’s	Law	on	the	surface	shown	above	gives:		

Noting	that enc
enc

Q
Q L

L
    ,		 0

0

(2 ) 2 .
L

E dA EA E rL Er
   


      Observing	the	E‐field’s	

inward	direction	as	negative,	the	charge	density	of	the	wire	is		

     12 2 2 3
0

8 8

2 2 0.500 m 8.85 10  C / N m 1.23 10  N/C

3.4204 10  C / m 3.42 10  C / m.

r E    

 

    

     
	

	
	
The	number	of	electrons	per	meter	is		

 
 

8

11

19

11

3.42 10  C / m
2.135 10  electrons/m

1.602 10  C

2.14 10  electrons per meter.

N

N





 
  

 

 

	

22.61. THINK:		A	solid	sphere	of	radius	R 	has	a	non‐uniform	charge	density	 2 .Ar  	Integrate	the	sphere.	
SKETCH:		Not	required.	
RESEARCH:		The	total	charge	is	given	by	

Sphere

.Q dV  		

SIMPLIFY:		Integrating	in	the	spherical	polar	coordinate	yields:	
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   
2 2

2 2 2 4

0 0
0 0 0 0 0

5 5
5

sin sin 4

4
4 4 .

5 5 5

R
R R

r R

r o

Q r r d d dr d d Ar r dr A r dr

r R
A A AR

   

       

  




  

 
   

 

      
	

CALCULATE:		Not	required.	
ROUND:		Not	required.	
DOUBLE‐CHECK:		One	can	check	the	result	by	single‐variable	integration,	using	spherical	shells:	

 

  

2

2 2 4 5

00 0

4

4
4 4 4

5 5

shell

RR R

dV A dr r dr

r
Q dV Ar r dr A r dr A AR



    

 

         
		

Which	agrees	with	the	previous	answer.	

22.62. THINK:		This	is	a	superposition	of	two	electric	fields.			
SKETCH:			

	
	

RESEARCH:		The	magnitude	of	the	electric	field	of	a	charged	wire	at	a	distance	 r 	from	the	wire	is,	by	
simple	application	of	Gauss’	Law,	 0/ 2 ,E r  	where	  	 is	 the	 linear	 charge	density	of	 the	wire.		

The	net	electric	field	at	 P 	is	given	by	    net

0 0

ˆ ˆ ˆ ˆsin cos sin cos
2 2

E x y x y
r r

    
 

   


	

SIMPLIFY:		By	symmetry, net

0

ˆsin .
2

xE E x
r

 


 
   

 

 

	

CALCULATE:	 1.00 μC/m,  	 2 23.00 40.0  cm 40.11 cm,r    	
3.00 cm

sin 0.07479
40.11 cm

   	 and	

  
   

 
6

net
12 2 2

1.00 10  C / m 0.07479
ˆ ˆ6707 N/C .

2 8.85 10  C / N m 0.4011 m
E x x








 





	

ROUND:		Keeping	three	significant	figures	yields	  net ˆ6.71 kN/C .E x


	

DOUBLE‐CHECK:		Since	the	vertical	components	cancel	out,	it	makes	sense	that	the	answer	is	in	the	
x‐direction.	

22.63. THINK:		Since	this	problem	has	a	spherical	symmetry,	it	is	possible	to	apply	Gauss’s	Law.		
SKETCH:			
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1r 	 is	 the	 radius	 of	 a	 sphere	 with	 a	 charge	 density	
3120 nC/cm .  	 2r 	 is	 the	 inner	 radius	 of	 a	

conducting	shell.		 3r 	is	the	outer	radius	of	the	conducting	shell.		The	shell	has	a	net	charge	 s .q 	

RESEARCH:	For	this	problem,	four	Gaussian	surfaces,	 1 (within the sphere),G 	 2G ሺbetween	the	sphere	

and	the	shellሻ,	 3  (within the shell),G 	and	 4 (outside the shell)G 	are	used.		By	applying	Gauss’s	Law	on	
each	surface,	the	electric	field	can	be	determined.	
SIMPLIFY:		For	the	Gaussian	surface	 1,G applying	Gauss’s	Law	gives		

enc enc enc

0 0 0

 .
q q V

EdA E dA


  
     

 

 

	

ሺaሻ	Using	 3
enc

4
,

3 aV r 	the	electric	field	is	  
3

2
1

0

4

3
4 ,

a

a

r
E r

 




 
 
 

0

.
3

arE



 		

ሺbሻ	For	the	Gaussian	surface	 2 ,G 	applying	Gauss’s	Law	yields:		

 
3

1 3 3
2enc 1 1

2
0 0 0 0

4
43

4 .
3 3b

b

r
q r r

E dA E r E
r

 
 


   

 
 
        		

ሺcሻ	For	the	Gaussian	surface	 3 ,G 	the	electric	field	is	zero	since	the	surface	is	in	a	conductor.			

ሺdሻ	For	the	Gaussian	surface	 4 ,G 	applying	Gauss’s	Law	gives		

 
3 3

2enc shell1 1
2 2

0 0 0 0 0 0

3
1

2
0

4
  4

3 3 4

1
.

3 4

sphere shell shell
d

d d

shell

d

q qq q qr r
E dA E r E

r r

qr
E

r

 
     


 


        

 
  

 


	

CALCULATE:	 Substituting	 the	 numerical	 values,	   3 3120 nC/cm 0.12 C/m , 	 1 0.12 m,r  		

2 0.300 m,r  		 3 0.500 m,r  	 0.100 m,ar  	 0.200 mbr  	and	 0.800 mdr  	yields	the	electric	fields:		

ሺaሻ	
  
 

3

8

12 2 2
0

0.12 C/m 0.100 m
4.518 10  N/C

3 3 8.85 10  C / Nm
arE


 

   


	

ሺbሻ 
  

  

 

   


333
81

2 212 2 2
0

0.12 C/m 0.12 m
1.953 10  N/C

3 3 8.85 10  C / Nm 0.200 mb

r
E

r
	

ሺcሻ 0E  	since	it	is	in	the	conducting	shell.	
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ሺdሻ	
  

  33 33
1

22 12 2 2
0

0.12 C/m 0.12 m 2.00 10 C1 1

3 4 3 48.85 10  C / Nm 0.800 m
shell

d

qr
E

r


  





              
	

															 71.589 10  N/C   	
ROUND:		Rounding	to	three	significant	figures:	
ሺaሻ 84.52 10  N/CE   	
ሺbሻ 81.95 10  N/CE   	
ሺcሻ 0E  	since	it	is	in	the	conducting	shell.	
ሺdሻ 71.59 10  N/CE    	
DOUBLE‐CHECK:		The	values	of	electric	fields	have	the	correct	units	and	are	of	reasonable	orders	of	
magnitude.	

22.64. THINK:		Using	the	symmetry	of	a	cylinder,	Gauss’s	Law	can	be	applied.	
SKETCH:			

	
	

Note	that	the	Gaussian	surfaces	 1G 	and	 2G 	are	cylindrical	surfaces	with	radii	 1r 	and	 2r 	and	a	length	
.L 	

RESEARCH:		The	electric	field	can	be	determined	by	applying	Gauss’s	Law	on	the	Gaussian	surfaces	

1G 	and	 2 .G 	

SIMPLIFY:		For	the	Gaussian	surface	 1,G 	applying	Gauss’s	Law	produces	

     enc
1 1 1 1

0 0 0 0 1

/ 2 / 2
ˆ ˆ 2   .

4

L Lq
E dA E r L r E r

r

  
   

     
  



	

Similarly	for	the	Gaussian	surface	 2 ,G 	using	Gauss’s	Law	gives		

         enc
22 2 2

0 0 0 0 2

/ 2 2 / 2 2 4ˆ 2   .
4

L RL L RLq R
E dA E r L r E

r

        
   

  
     

  



	

Therefore,	the	expressions	of	the	electric	fields	are:	

ሺaሻ		For	 ,r R 	the	electric	field	is	
0

ˆ.
4

E r
r







	

ሺbሻ		For	 ,r R 	the	electric	field	is	
0 2

4 ˆ.
4

R
E r

r

  






	

CALCULATE:		Not	required.	
ROUND:		Not	required.	
DOUBLE‐CHECK:		Since	the	metal	cylinder	is	a	conductor,	all	its	charge	resides	on	its	outer	surface.		
This	means	that	the	field	inside	the	cylinder	is	not	affected	by	the	charge	on	the	cylinder.		Therefore,	
for	 ,r R 	the	electric	field	is	only	due	to	the	wire.		For	 ,r R 	the	charge	on	the	cylinder	produces	an	
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electric	field	as	if	all	its	charge	was	concentrated	in	the	center	of	the	cylinder.		Therefore,	the	electric	
field	can	be	found	by	replacing	 / 2 	with	  / 2 2 R   	as	the	new	linear	density	of	a	wire.	

22.65. THINK:		Use	the	values	from	the	question:	 2
1 3.00 μC/m ,  	and	 2

2 5.00 μC/m .   	
ሺaሻ	 The	 total	 field	 can	 be	 determined	 by	 superposition	 of	 the	 fields	 from	 both	 plates.	 	 The	 field	
contributions	from	the	two	charged	sheets	are	opposing	each	other	at	point	P,	to	the	left	of	the	first	
sheet.	
ሺbሻ	The	situation	is	similar	to	aሻ	except	that	the	fields	due	to	both	charged	sheets	point	in	the	same	
direction	at	point	 .P 	
SKETCH:			

	
RESEARCH:			

ሺaሻ	At	point	 ,P 	the	field	due	to	sheet	#1	is	given	by	   1 1 0/ 2 ,E x   	and	the	field	due	to	sheet	#2	is	

given	by	   2 2 0/ 2 .E x   	Note	that	 total 1 2 .E E E  	

ሺbሻ	At	point	 ,P 	the	field	due	to	sheet	#1	is	given	by	   1 1 0/ 2 ,E x   	and	the	field	due	to	sheet	#2	is	

given	by	   2 2 0/ 2 .E x    		Again, total 1 2 .E E E    	 	

SIMPLIFY:			

ሺaሻ		  

 1 21 2

0 0 02 2 2
E x x

  
  

     
     
   

	

ሺbሻ		  

 1 21 2

0 0 02 2 2
E x x

  
  

         
   

	

CALCULATE:			

ሺaሻ		
 

    
6 2

5
total 12 2 2

3.00 5.00 10  C/m
ˆ ˆ1.130 10  N/C

2 8.85 10  C / N m
E x x





  
  


	

ሺbሻ		
  

    
6

5
total 12 2 2

3.00 5.00 10  N/C
ˆ ˆ4.520 10  N/C

2 8.85 10  C / N m
E x x





  
  


	

ROUND:	
ሺaሻ		 5

total 1.13 10  N/CE   	in	the	positive	x‐direction	

ሺbሻ		 5
total 4.52 10  N/CE   	in	the	positive	x‐direction	

DOUBLE‐CHECK:	The	results	are	reasonable	because	the	answer	in	ሺbሻ	is	four	times	larger	than	that	
found	 in	 ሺaሻ	 since	 in	 ሺaሻ	 the	 fields	 are	 opposing	 each	 other	 and	 in	 ሺbሻ	 the	 fields	 are	 in	 same	
direction.	

22.66. THINK:			
ሺaሻ The	field	due	to	a	charged	sphere	outside	the	radius	of	the	sphere	is	equivalent	to	the	field	due	to	
a	point	charge	of	equal	magnitude	at	the	center	of	the	sphere.	
ሺbሻ The	electric	field	radiates	outward,	perpendicular	to	the	surface	of	the	sphere.	
ሺcሻ The	field	inside	a	conductor	is	zero.	
SKETCH:			
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RESEARCH:			

ሺaሻ The	field	is	given	by:		 0.271nCq  	and	      2 2 22 23.1 cm 1.10 cm 0 cm .r    	

ሺbሻ The	angle	is	given	by	    tan 1.10 cm / 23.1 cm  	or	    1tan 1.10 cm / 23.1 cm .  	

ሺcሻ The	field	is	zero	inside	a	conductor.		
SIMPLIFY:		Not	required.	
CALCULATE:			

ሺaሻ 
  

      
9

2 212 2 2

0.271 nC 10  C/nC
45.56 N/C

4 8.85 10  C / N m 0.231 0.0110  N/C
E






 

 
		

ሺbሻ 1 1.10 cm
tan 2.7263

23.1 cm
      

 
	

ሺcሻ 0 N/C 		 	
ROUND:			
Rounding	to	three	significant	figures:	
ሺaሻ 45.6 N/CE  	
ሺbሻ 2.73   	
ሺcሻ 0 N/C 	
DOUBLE‐CHECK:			
ሺaሻ Not	required.	
ሺbሻ Since	the	y‐component	is	much	less	than	the	x‐component	I	expected	the	angle	to	be	small,	
which	it	is.	
ሺcሻ Not	required.	

22.67. THINK:		The	spherical	symmetry	of	the	charged	object	allows	the	use	of	Gauss’s	Law	to	calculate	the	
electric	field.		To	do	this,	separate	Gaussian	surfaces	must	be	considered	for	 r a 	and	 r a .	
SKETCH:		
ሺaሻ			

	
ሺbሻ			
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RESEARCH:		

ሺaሻ The	total	charge	inside	the	Gaussian	surface	is	given	by	 2 1
00
4 .

r
q r dr   	The	charge	density	is	

0 sphere/Q V  ,	and	the	volume	is	   3
sphere 4/3 .V a 	

ሺbሻ The	total	charge	is	simply	the	charge	of	the	non‐conducting	layer	and	the	gold	layer:	
Total Charge 2 .q Q Q Q     	

Gauss’s	Law	states	 enc 0/ .E dA q  
 



	Since	the	Gaussian	surface	in	this	case	is	a	sphere,	Gauss’s	Law	

simplifies	to	  2
04 / .E r q  	

SIMPLIFY:			

ሺaሻ		    
2 1 2 1 3 3

0 0 0 30 0

2
4 4 4/3 .

4/3 3

r r Q
q r dr r dr r r

a
      


           

  	Substituting		

 0 3
,

4/3

Q

a





3

3
.

Qr
q

a
 	    

3
2

3 3
0 0 0

4   ,
4

encq Qr Qr
E r E r r

a a


   
 

     
 

 

 	 < .r a 	The	direction	is	radially	

outward.		

ሺbሻ	  2
2 2

0 0 0 0 0

2
4    for   .

4 4
encq Q Q Q Q Q

E r E r a E r
r r


    

    
            

   



 	The	direction	is	

towards	the	center	of	the	sphere.		
ሺcሻ			

	
	

The	discontinuity	at	 r a 	is	due	to	the	surface	charge	density	of	the	gold.		The	charge	on	the	gold	
layer	causes	a	sudden	spike	in	the	total	charge	resulting	in	a	discontinuity	in	the	electric	fields.		
CALCULATE:		Not	applicable.	
ROUND:		Not	applicable.	
DOUBLE‐CHECK:	
ሺaሻ	The	electric	field	increases	 r 	gets	larger	since	the	charge	inside	the	Gaussian	surface	increases	
as	 a	 function	 of	 3r 	 while	 the	 area	 increases	 as	 a	 function	 of	 2 .r 	 Since	 the	 increase	 of	 the	 area	

decreases	the	field	by	a	function	of	 2r 	and	the	charge	increases	the	field	by	 3r 	it	is	reasonable	that	
the	field	increases,	as	a	function	of	 .r 	
ሺbሻ	The	sphere	acts	like	a	point	source	is	as	expected.	
ሺcሻ	There	is	a	discontinuity	in	the	 v. E r 	graph	due	to	the	presence	of	a	surface	charge	density	on	
the	gold	layer,	which	is	expected.	

22.68. THINK:		By	constructing	Gaussian	surfaces	in	both	regions	 r R and	 ,r R 	the	electric	field	can	be	
calculated	using	Gauss’s	Law.	
SKETCH:			
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RESEARCH:	 	The	 total	 charge	 inside	 the	Gaussian	 surface	 is	 given	by	 2
00
4 .

r
q r dr    	 The	 charge	

density	 is	 given	 by	      / sin / 2 .r r r R   	 For	 the	 Gaussian	 surface	 outside	 the	 sphere	

 ,r R the	total	charge	is	given	by	 2
00
4 .

r
q r dr    	The	electric	field	can	be	calculate	using	Gauss’s	

Law:	 enc 0/ ,E dA q 
 



	which	for	a	spherical	Gaussian	surface	is	  2
04 / .E r q   	

SIMPLIFY:		For	the	case	 ,r R  2

0 0

0
0

sin 4 4 sin
2 2

2 2
4 cos cos

2 2

r r

r
r

r r
q r dr r dr

r R R

Rr r R r
dr

R R

   

 
 

                    
                  
         

 



	

Integration	by	parts:	
2

0

2 2
4 cos sin

2 2

8
cos 2 sin .

2 2

r

Rr r R r
q

R R

R r r
r R

R R

 
 

  


                 
         
           

    

	

For	the	case	 ,r R q is	given	by		

    

     

2
2

0

0

2 2 2 2 2

2 2

2 2
4 4 cos sin

2 2

2 4 2 4 16
4 0 sin 4 0 1 .

2

R

R R R R R R
q r r dr

R R

R R R R R

   
 

  
    

                              
                           

              


	

The	electric	field	is	given	by	  2
2

0 0

4   .
4  

q q
E r E

r


  
   	

	For	the	case	 ,r R 	

 2 2
0

1 8 8
cos 2 sin cos 2 sin              1

4 2 2 2 2

R r r Rk r r
E r R r R

r R R r R R

      
   

                               
           

	

For	 ,r R 	
2 2

2 2 2
0 0

16 1 4
.

4

R
q

r r

 
    

    
     
    

										ሺ2ሻ	

For ,r R 	

   2

8 8 8 16
1 cos 2 sin  = cos 2sin 0 2 1

2 2 2 2

Rk R R k k k
R R

R R R

        
   

                                            	

 

   

2

2 2
0 0

4 4 16
2

1 2

R k

R

  
    

   
     
   

 

	

The	expressions	are	equal	when	 .r R 		
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CALCULATE:		Not	applicable.	
ROUND:		Not	applicable.	
DOUBLE‐CHECK:		The	two	expressions	are	equal	at	 ,r R 	which	should	be	the	case	since	there	are	
no	 surface	 charge	 densities	 present	 cause	 discontinuities	 for	 ,r R 	 the	 objects	 act	 like	 a	 point	
source,	which	is	expected	from	a	charged	sphere.	

22.69. THINK:	The	principle	of	 superposition	can	be	used	 to	 find	 the	electric	 field	at	 the	specified	point.		
The	electric	field	at	the	point	  2.00,1.00 	 is	modeled	as	the	sum	of	a	positively	charged	cylindrical	

rod	with	no	hole	and	a	negatively	charged	cylindrical	rod	whose	size	and	 location	are	 identical	to	
those	of	the	cavity.	Let’s	first	think	about	the	case	of	the	positively	charged	cylindrical	rod	without	a	
hole.	 Since	 the	point	of	 interest	 is	 inside	 the	 rod,	 the	entire	charge	distribution	of	 the	 rod	cannot	
contribute.		Instead	we	draw	our	Gaussian	surface	as	a	cylinder	with	our	point	of	interest	on	its	rim	
ሺsee	 sketch	 below,	 where	 the	 dashed	 circle	 in	 the	 cross‐sectional	 view	 represents	 the	 Gaussian	
cylinderሻ.	
SKETCH:	

	
	

RESEARCH:		In	section	22.9	of	the	textbook	it	was	shown	that	for	cylindrical	symmetry	of	the	charge	
distribution	the	electric	field	outside	the	charge	distribution	can	be	written	as	  E  2k / r ,	where	r	is	
the	distance	to	the	central	axis	of	the	charge	distribution	and	  	is	the	charge	per	unit	length.		
In	 the	problem	here	 the	charge	was	 initially	uniformly	distributed	over	 the	entire	cross‐sectional	
area,	which	means	that	the	value	of	  	for	the	Gaussian	surface	and	for	the	hole	are	proportional	to	
their	cross‐sectional	area:	  Gauss  rod (r / R)2 , and	 hole  rod (rhole / R)2 .	
Now	we	have	the	tools	to	calculate	the	magnitudes	of	the	individual	electric	fields	of	the	rod	and	of	
the	hole.	What	is	left	is	to	add	the	two,	which	is	a	vector	addition.		So	we	have	to	determine	the	x‐	
and	y‐components	of	the	fields	individually	and	the	combine	them.			
If	 1E 	 is	 the	 field	 from	the	dashed	cylinder	and	 2E 	 is	 that	of	 the	cavity	 then	 from	considering	 the	

geometry	the	relation	are	given	by:	  1/22 2
1 12 / 2 1 ,xE E  	  1/22 2

2 2 2 / 2 1 ,xE E  	  1/22 2
1 1 / 2 1yE E  	

and	  1/22 2
2 20.5 / 2 0.5 .yE E  		

The	net	electric	field	is	given	by	the	following	relations	 1 2x x xE E E  	and	 1 2 .y y yE E E  	

SIMPLIFY:	
2 2

1 Gauss rod rod2 / 2 ( / ) / 2 /E k r k r R r k r R     	
2

2 hole 2 rod hole 22 / 2 ( / ) /E k r k r R r    	

where	 2r 	is	the	distance	between	our	point	of	interest	and	the	center	of	the	hole.	

   1 21/2 1/22 2 2 2

2 2
,

2 1 2 0.5
xE E E 

 
	and	

   1 2 1/22 2 2 2

1 0.5
.

2 1 2 0.5
yE E E 

 
				

CALCULATE:		     1/22 2
0.01 m 0.0200 m 0.02236 mr    	

    1/22 2

2 0.00500 m 0.0200 m 0.02062 mr    	
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 
 

9 2 2 7
5

1 2

2(8.99 10 Nm /C )(6.00 10 C/m) 0.02236 m
2.680 10  N/C

0.0300 m
E

 
  

 

29 2 2 7
5

21

2(8.99 10 Nm /C )(6.00 10 C/m) 0.0100 m
0.581 10  N/C

0.02062 m 0.0300 m
E

        
 

		

  Ex 1.833105  N/C, 	
  
Ey 1.339 105  N/C 	

ROUND:	  Ex 183 kN/C, 	
  
Ey 134 kN/C 	

DOUBLE‐CHECK:	 	We	can	calculate	the	magnitude	and	direction	of	the	combined	electric	field	and	

find:	
  
E  Ex

2  Ey
2  227 kN/C, 	and	  tan1(Ey / Ex ) 36.1 .	If	the	hole	would	not	have	been	drilled,	

the	magnitude	would	have	been	 the	magnitude	we	 calculated	 above	 for	   E1 ,  E1  268 kN/C ,	 and	 it	

would	have	pointed	along	the	
 
r
r 	vector	with	an	angle	of	26.6°.		This	means	that	our	result	states	that	

the	magnitude	of	the	electric	field	is	weakened	due	to	the	presence	of	the	hole,	and	that	it	does	not	
point	 radial	 outward	 any	 more,	 but	 further	 away	 from	 the	 x‐axis.	 	 Both	 of	 these	 results	 are	 in	
accordance	with	expectations	and	add	confidence	to	our	result:	the	hole	modifies	the	electric	field	
somewhat,	but	does	not	do	so	radically.	

22.70. THINK:		Use	the	principle	of	superposition	and	model	the	problem	as	a	positive	infinite	plane	and	a	
negative	circular	disc.	
SKETCH:			

	
	

RESEARCH:		The	electric	field	contributed	by	the	plane	is	given	by:	 plane 0/ 2 .E   	One	can	find	the	

electric	field	of	a	disc	by	adding	up	the	contributions	from	each	small	area.		From	the	symmetry	one	
many	conclude	that	the	field	points	vertically.		The	contribution	of	each	small	area	to	the	field	in	the	
y‐direction	 is	 given	 by:	

      2
0/ 4 cos / ,dE dA r cos / ,h r  2 2 2 ,r h   disc .E dE total plane disc .E E E  	

20.200 m, 0.050 m, 1.3 C/m .h R    	

SIMPLIFY:		
 

 3/22 22
0 0

cos
 4 4

hd dedA
dE

hr

   
 

            
	

 
     

2 1/2
2 2

disc 3/2 1/20 0 2 2 2 200 0 0

1 1
2  

4 4 2 

RRh h h
E d d h

hh h R

      
  


                          

 

   total disc plane 1/2 1/22 2 2 2
0 0 0

1 1

2 2 2

h h
E E E

h h R h R

  
  

                 
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CALCULATE:		
      

2
10

total 1/212 2 2 2 2

1.30 C/m 0.200 m
7.125 10  N/C

2 8.85 10 C / N m 0.200 m 0.0500 m
E


   

 
	

ROUND:		 10
total 7.13 10  N/CE   	

	
	

DOUBLE‐CHECK:		The	plot	shows	that	for	large	 h 	the	result	is	the	same	as	that	of	an	infinite	plane	
without	a	hole	as	one	would	expect.	

22.71. Regardless	of	what	orientation	the	cube	is	in,	we	can	always	enclose	it	in	a	Gaussian	surface	that	just	
covers	the	cube.		Gauss’s	Law	states	that	 enc 0/ .EdA q 

 



	

	

Now	 consider	 the	 flux	 through	one	particular	 face	 given	by	 1.EA


	 There	 exists	 a	 flux	 through	 the	

opposite	face	given	by	 2EA


	with	the	relation	 1 2EA EA 
 

	since	 1A


	and	 2A


	point	the	opposite	way.		

The	sum	of	the	flux	contributed	between	the	two	opposite	sides	is	 1 2 0.EA EA 
 

	If	this	calculation	
is	done	for	each	side	then	the	total	flux	is	 0 and	hence	the	total	charge	must	be	 0 	by	Gauss’s	Law.			

22.72. The	dipole	moment	is	given	by	 p qd 	where	 d 	is	the	distance	between	the	charges.	The	maximum	
torque	is	when	the	field	is	perpendicular	to	the	dipole	moment.		

	

The	torque	is	then	   30 278.0 10  C m 500.0 N/C 4.0 10  N m.qEd pE        		

22.73. 	
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Consider	a	cylindrical	Gaussian	surface	with	a	radius	of	 4.00 cm .		By	Gauss’s	Law,	 enc 0/ .EdA q 
 



	

The	charge	inside	the	cylinder	is	 2 ,q r l 	so	the	field	is	given	by	

    
 

8 32
2

12 3 1 4 2
0 0

6.40 10  C/m 0.0400 m
2   1.45 10  N / C

2 2 8.854 10  m  kg  s  A

r l r
E rl E

 
 



  


     


	

away	from	the	y‐axis.		The	information	concerning	the	radius	of	the	cylinder	is	irrelevant.		

22.74. The	electric	force	and	the	gravitational	force	must	balance.					

	

	 0  / ,qE mg E mg q    	 29.81 m/sg  	

ሺaሻ	 31
electron 9.109 10  kg,m   	 191.602 10  C,q    	

  





   

 

31 2

11

19

9.109 10  kg 9.81 m/s
5.58 10  N/C

1.602 10  C
E 	

with	the	field	directed	down.		

ሺbሻ		 27
proton 1.672 10  kg,m   	 191.602 10  C,q   	

  





  



27 2

7

19

1.672 10  kg 9.81 m/s
1.02 10  N/C

1.602 10  C
E 	with	

the	field	directed	up.	

22.75. 	

	

ሺaሻ	Construct	a	Gaussian	surface	ሺsphericalሻ	with	radius	between	 20.0 cm 	and	 24.0 cm. 	Gauss’s	
Law	states	that	the	total	flux	is	equal	to	 0/ ,q  	since	the	electric	field	inside	the	last	metallic	shell	is	
zero,	the	flux	must	be	zero	and	hence	the	total	charge	must	be	zero.		Since	the	total	charge	to	be	
zero:		

inside wall inside wall10.00 μC 5.00 μC 0  5.00 μC.q q      	
ሺbሻ	Constructing	a	Gaussian	sphere	that	contains	all	the	shells,	it	can	be	determined	that	since	the	
electric	field	is	zero,	outside	the	largest	shell	the	flux	is	also	zero	and	hence	the	total	charge	must	be	
zero.	 outside wall inside wall outside wall10.00 μC 5.00 μC 0  5.00 μC 5.00 μC 10.00 μC 0q q q         ,	 which	

then	implies	 outside wall 0.q  	

22.76. 	
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The	 fields	 from	 both	 plates	 are	 always	 perpendicular	 to	 each	 other.	 	 The	 field	   E1 	 from	 plane	 1	

always	points	away	 from	plane	1.	 	The	 field	 E2 	 from	plane	2	always	points	 toward	plane	2.	 	The	
combined	 field	 E 	 points	 in	 different	 directions	 depending	 on	 where	 you	 measure	 it,	 but	 the	
magnitude	of	the	field	is	the	same	everywhere.	

   
 

2 2

2 2 1 2
1 2

0 0

2 22 22 2
1 2

12 3 1 4 2
0

2 2

30.0 pC/m 40.0 pC/m
2.82 N/C

2 2 8.85 10  m  kg  s  A

E E E

E

 
 

 
   

   
      

   

 
  



	

22.77. The	 sum	 of	 the	 forces	 on	 the	 electron	 is	 given	 by	 total gravity coulomb+ .F F F mg qE    	  150. N/C,E 	
191.602 10  C,q    	

319.11 10  kg.m   Thus, .net e
e

eE
F qE mg ma a g

m
     

  
   

19

2 13 2

31

1.602 10 C 150. N/C
9.81m/s 2.64 10  m/s .

9.11 10  kg
ea






   


	

22.78. This	problem	can	be	solved	using	Gauss’s	Law.	 2total

0

Flux 10 N m / C.n

q
E da E da


      

 

 

 

	Since	

,nEda E da      2 12 12 2 2 1
total 0 10.0 N m /C 8.85 10  C 10.0 N m /C 8.85 10 C/ N m . q        	

22.79. This	problem	can	be	solved	using	Gauss’s	Law.		 total 0Flux / .q  	The	approximation	can	be	made	that	

the	flux	leaving	the	ends	of	the	rod	are	negligible,	so	 total 0 0Flux / /q l    	where	 l 	is	the	length	of	
the	rod.		

  12 6 2

50
8.85 10 1.46 10  N m /C

4.31 10  C/m
0.300 ml







 
    	

	

22.80. THINK:		I	first	need	to	find	the	relationship	between	the	first	wire	and	the	second	wire.	
SKETCH:		Not	required.	

RESEARCH:	 	The	 field	due	 to	 the	 first	wire	 is	 given	by:	 1

2
2.73 N / C.

k
E

r


  	The	 field	due	 to	 the	

second	wire	is	given	by	    2 2 0.81 / 6.5 .E k r 	
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SIMPLIFY:		
          

   2 1

2 0.81 20.81 0.81
6.5 6.5 6.5

k k
E E

r r
	

CALCULATE:		          
   

2 1

0.81 0.81
2.73 N/C 0.3402 N/C

6.5 6.5
E E 	

ROUND:		 0.340 N/C 	
DOUBLE‐CHECK:		The	answer	is	comparable	to	the	electric	field	of	the	original	wire	which	makes	it	
reasonable.		

22.81. THINK:		I	want	to	find	the	charge,	 1q needed	to	balance	out	the	force	of	gravity.	 	After	finding	 ,q 	 I	
can	determine	the	number	of	electrons	based	on	the	charge	of	a	single	electron.	
SKETCH:			

	
	

RESEARCH:		The	net	force	on	the	object	must	equal	zero	in	order	for	the	object	to	remain	
motionless.	 total gravity coulomb+ 0,F F F  	 gravity g,F m  	 coulomb ,F Eq 	 0/2E   	for	an	infinite	plane.		The	

number	of	electrons	is	 electron/ .q q 	

SIMPLIFY:		 total gravity coulomb total+ 0  0,F F F F mg Eq       	 0

0

2
   .
2

mg
Eq mg q mg q


 

     		

Number	of	electrons 0

electron

2
.

mg

q




 	 29.81 m/s ,g  	 5 23.50 10  C/m ,    	 1.00 g.m  	

CALCULATE:			

Number	of	electrons	
   

  
3 2 12 3 1 4 2

10

5 2 19

2 1.00 10  kg 9.81 m/s 8.85 10  m  kg  s  A
3.097 10  electrons

3.50 10  C/m 1.602 10  C

   

 

 
  

   
	

ROUND:		 103.10 10  electrons 	
DOUBLE‐CHECK:	 	 This	 number,	 though	 large,	 is	 reasonable	 since	 the	 amount	 of	 charge	 on	 each	
electron	is	tiny.	

22.82. THINK:			
ሺaሻ	The	necessary	electric	field	strength	can	be	determined	by	finding	the	acceleration	required	to	
achieve	 the	 desired	 deflection.	 	 The	 final	 speed	 of	 the	 proton	 can	 be	 found	 through	 the	 relation	
between	the	proton’s	initial	velocity	and	its	angle	of	deflection.	
ሺbሻ	 The	 electric	 field	 strength	 required	 to	 give	 the	 protons	 a	 specific	 acceleration	 will	 impart	 a	
different	acceleration	to	the	kaons	due	to	difference	in	mass.	
	
	
	
SKETCH:			
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RESEARCH:			
ሺa,bሻ	Initially	the	velocity	in	the	y‐direction,	 ,yv 	is	zero.		The	only	part	of	the	velocity	affected	by	the	

electric	field	is	 ,yv 	 xv 	is	the	same	before	and	after	the	deflection.		 ,yv at 	 t 	is	the	time	the	proton	

spends	in	between	the	plates.		 0 ,F m a Eq  	 tan / ,y xv v  	 2 2 2
x yv v v  ,	where	 v 	is	the	new	speed.		

/ ,xt l v 	 l 	 is	 the	 distance	 the	 proton	 has	 to	 traverse	 between	 the	 plates.	 	 31.50 10  rad,   	

15.0 cm,l  	 15.0 km/s.xv  	

ሺcሻ	The	mass	of	a	proton	 1.67 1027  kg. 	The	mass	of	a	kaon	is	  8.811028  kg. 	The	speed	of	the	kaon	
is	given	by	setting	the	momentum	of	a	kaon	equal	to	the	momentum	of	a	proton:	

kaon kaon proton proton .m v m v 	

SIMPLIFY:			
ሺa,bሻ	

  
vy  vx tan  at    vy / t  a 	

  
Eqma 

mvy

t


mvx tan
t


mvx tan

l / vx


mvx

2 tan
l

   E
mvx

2 tan
lq

	

  
v2  vx

2  vy
2  vx

2  vx tan 2  vx
2 1 tan2 	

ሺcሻ	Take	the	result	from	part	ሺaሻ	to	find	 . 	

  

E
mvx

2 tan
lq

   tan  qEl

mvx
2      tan1 qEl

mvx
2







	

CALCULATE:		

ሺaሻ	

  

E
1.67 1027  kg 15.0 103  m / s 2 tan 1.50 103  rad 

0.150 m  1.6021019  C   0.023455 N/C 	

ሺbሻ
  
v  15.0 103  m / s  1 tan2 1.50 103  rad  

1/2

15.000017 km/s 	

ሺcሻ	
  
vkaon 

1.67 1027  kg

8.811028  kg
15.0 103  m/s  28434 m/s 		

With	the	results	from	part	ሺaሻ,	the	electric	field	is	 Emvx
2 tan / lq . 		

   31.50 10 rad, 	
    

  
 



  
 



2
27 3 3

19

1.67 10  kg 15.0 10  m/s tan 1.50 10  rad
0.02345507 N/C

0.150 m 1.602 10  C
E 	

   
  




  



              

19

1 1 4

2 228

1.602 10 C 0.02345507 N/C 0.150 mE
tan tan 7.91295 10 rad

8.81 10 kg 28434 m/sx

q l

mv
	

ROUND:			
ሺaሻ	  0.0235 N/CE 	

ሺbሻ	   41.50 10  km/sv 	

ሺcሻ	 47.91 10  rad   	
DOUBLE‐CHECK:			
The	change	in	speed	is	small	compared	to	the	magnitude	of	the	speed,	which	is	expected	since	the	
deflection	was	also	small.	The	deflection	of	the	kaon	is	less	that	the	deflection	of	a	proton	with	the	
same	momentum	because	the	kaon	has	a	higher	speed.	

22.83. THINK:	Using	the	charge	density,	Gauss’s	Law	can	be	used	to	find	the	electric	field	as	a	function	of	
the	radius.	
SKETCH:		Not	required.	
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RESEARCH:	The	charge	inside	a	spherical	Gaussian	surface	is	given	by	 sphere .q V 	   3
sphere 4 / 3 ,V r 	

6 33.57 10  C / m   	and	  0.530 m.r 		Gauss’s	Law	gives	the	field	  2
04 / .EdA E r q  

 



	

SIMPLIFY:		     3
2

2 2 2
0 0 0 0 0

4 / 31 1 1
4   

34 4 4

rq q V r
E r E

r r r

  
      

    
                

	

CALCULATE:		
  

 





  



6

4

12

3.57 10 0.530
N/C 7.127 10  N/C

3 8.85 10
E 	

ROUND:		 47.13 10  N/CE   	
DOUBLE‐CHECK:		The	result	was	independent	of	the	actual	radius	of	the	sphere	as	it	should	be.	

22.84. THINK:		Gauss’s	Law	can	be	used	to	determine	the	electric	field	as	a	function	of	radius	for	the	three	
cases	 ,r R 	 2R r R  	and	 2 .r R 	
SKETCH:			

	
RESEARCH:		The	electric	field	through	the	surface	of	a	sphere	of	radius	r	is	given	by	Gauss’s	Law:		

 2
04 / .E dA E r q   

 



	

For	 ,r R 	the	enclosed	charge	is	given	by:	

 2
1 10

4 ,
r

q r dr     	

where		

 1 3
.

4 / 3

Q

R



 	

For	 2 ,R r R  	the	enclosed	charge	is	given	by:		

 2
2 2 4 ,

r

R
q Q r dr      	

where		

    2 3 3
.

4 / 3 2

Q

R R








	

For	 2 ,r R 	the	enclosed	charge	is	 3 0.q Q Q   	
SIMPLIFY:				
For	 :r R 		

 
3

2 2 3
1 3 3 3 30 0

3 3 3
4

34

r rQ Q Q r Q
q r dr r dr r

R R R R



            

  
  	

 2 31
3 3

0 0 0

4   
4r R r R

q Q Qr
E r r E

R R


   

 
     

 
	

For	 2 ,R r R  	
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     2 2 2 3 3
2 2 3 3 3

3 3
4 4

28 7 7

r r r

R R R

Q Q Q
q Q r dr Q r dr Q r dr Q r R

R R R
  


               

    	

 3 3
2 2 3 2 3 2 3

00 0

31 1 8
1

7 284 7 4 7R r R

Q Q r Q r
E Q r R

r R r R r R  

          
                               

	

For	 2 :r R 	Since	the	total	charge	is	zero,	by	Gauss’s	Law	 2 0.r RE   	
CALCULATE:		Not	applicable.	
ROUND:		Not	applicable.	
DOUBLE‐CHECK:		It	is	expected	that	the	expression	for	 r R 	and	 2R r R  	are	equal	at	 r R 	and	
the	expressions	for	 2r R 	and	 2 ,R r R  	are	equal	at	 2 .r R 		For	 :r R 		

3 2
0 04 4r R

Qr Q
E

R R    	

2 2 3 2 3 2
0 0 0

8 8

28 28 4R r R r R

Q r Q R Q
E E

r R R R R    

      
           

      
	

For	 2 :r R 		

2 >22 3 2 3 2 2
0 0 0

8 8 2 2 2
0

28 28 284R r R r R

Q r Q R Q
E E

r R R R R R   

          
                 

          
	

The	expressions	are	equal,	so	the	solution	is	reasonable.	

22.85. THINK:		The	electric	field	due	to	the	charge	induces	a	charge	distribution	on	the	floor	below	it.		As	a	
result,	 the	 charge	experiences	a	 force	directed	 toward	 the	 floor.	 	 Since	 the	 charge	and	 its	 ‘mirror	
image”	describe	a	dipole,	the	electric	field	lines	are	perpendicular	to	the	floor.		I	want	to	determine	
the	force	acting	on	the	charge,	the	electric	field	just	above	the	floor,	the	surface	charge	density	and	
the	total	surface	charge	induced	on	the	floor.			
SKETCH:			

	
A	Gaussian	pill	box	may	be	drawn	along	an	infinitesimally	small	area	as	follows:		

	
	

RESEARCH:		The	electric	field	due	to	the	charge	is	given	by	 2/ ,E kq r 	where	q	is	the	magnitude	of	
the	charge	and	r	is	the	distance	from	the	charge	to	the	floor.		The	force	experienced	by	the	charge	is	
given	by	Coulomb’s	law;	   2

0 1 21/ 4 / .F q q r 	Since	the	electric	field	points	in	the	negative	y‐

direction,	only	the	y‐contribution	from	each	charge	need	be	found.		The	y‐contribution	is	given	by		
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2
0

1
cos ,

4

q
E

r



 

  
 

cos
a

r
  ,	and	  1/22 2 .r a   	

Since	the	y‐component	from	both	charges	is	the	same	ሺi.e.	since	the	charges	are	equal	in	magnitudeሻ,	

the	total	electric	field	is	then:	 total 2
0

2
cos .

4

q
E

r



 

  
 

		Using	Gauss’s	Law	on	the	pillbox,	

0/   .EdA dq dq dA    	The	total	charge	is	given	by	 infinite
plane

.q dA  	

SIMPLIFY:			

ሺbሻ	
 

1 2
2

04 2

q q
F

a

 
 
 
 

	

ሺcሻ	
 total 2 3 3/22 2

0 0 0

2 2 1
cos

4 4 2

Q Qa Qa
E

r r a


   

 
                  

	

ሺdሻ	
0 0

,
dq dA

EdA


 
  	

0

E



 	and		
 0 3/22 2

1

2

Qa
E

a
 

 

 
  
   

	

ሺeሻ	
   

    1/2
2 2

3/2 3/20 02 2 2 2 0
2 2

2 2 2

Qa Qa aQ
q dA dp d Qa

a a

    
  

  
   

                                
   	

CALCULATE:			

ሺbሻ	
  
  

6 6

3
212 2 2

1.00 10  C 1.00 10  C
8.9918 10  N

4 8.85 10 C / N m 1.00 m
F



 




  
   


	

ሺcሻ	Not	applicable.	
ሺdሻ	Not	applicable.	
ሺeሻ	Not	applicable.	
ROUND:			
To	three	significant	figures:	
ሺbሻ	 38.99 10  N downwardF   	
DOUBLE‐CHECK:			
ሺaሻ	The	sketch	is	symmetric	as	it	should	be.	
ሺbሻ	 The	 force	 is	 downward	 as	 it	 should	 be	 since	 the	 positive	 charge	 is	 attracted	 to	 the	 negative	
charge.	
ሺcሻ	 The	 field	 gets	 weaker	 as	  	 gets	 larger	 as	 expected	 since	 the	 source	 is	 farther	 away	 with	
increasing . 	
ሺdሻ	The	surface	charge	density	gets	smaller	as	  	gets	larger	since	the	source	is	farther	away	with	
increasing	 . 	
ሺeሻ	Since	all	the	field	lines	coming	from	the	charge	go	onto	the	top	of	the	slab	it	is	not	unreasonable	
that	the	total	charge	induced	is	equal	to	the	charge	in	magnitude.		
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	 Exercises	22.86–22.88			The	electric	field	a	distance	d	from	the	wire	is
2

.
k

E
d


 	The	force	is	

then
2

.
e k

F qE
d


 

	
From	Newton’s	Second	Law	we	have

2
.

e k
F ma

d


 

	
So	the	acceleration	is	

2
.

e k
a

md


 	

22.86. 
   

  

19 9 2 2 12

6 2

27

2 1.602 10  C 8.99 10  N m /C 2.849 10  C/m2
7.198 10  m/s

1.673 10  kg 0.6815 m

e k
a

md


 



  
   


	

22.87. 
2e k

a
md


 	

	
   

  
7 2 27

12

19 9 2 2

1.111 10  m/s 1.673 10  kg 0.6897 m
4.451 10  C/m

2 2 1.602 10  C 8.99 10  N m /C

amd

ek







 
   

 
	

22.88. 
2e k

a
md


 	

	

   
  
19 9 2 2 12

27 7 2

2 1.602 10  C 8.99 10  N m /C 6.055 10  C/m2
0.6978 m.

1.673 10  kg 1.494 10  m/s

ek
d

ma


 



  
  

 

		 Exercises	22.89–22.91			The	magnitude	of	the	electric	field	at	the	center	due	to	a	differential	element	

d 	is	
2

.
k d

dE
R






	The	x‐components	add	to	zero,	leaving	only	a	field	in	the	y‐direction.	The	y‐

component	is	
2

sin .y

k d
dE

R

 


	Taking	d Rd 	we	have	
2

sin sin .y

k R k
dE d d

R R

      	We	

integrate	from	0	to	 	to	get	the	magnitude	of	the	electric	field:	

 00

2
sin cos 2 .

k k k k
d

R R R L

           	

	 So	
2

.
k

E
L

 
 	

22.89. 
  

 

9 2 2 8

4
2 8.99 10  N m /C 5.635 10  C/m2

1.438 10  N/C
0.2213 m

k
E

L

 
 

    	

22.90. 
2 k

E
L

 
 	

	
  

 
4

8

9 2 2

3.117 10 N/C 0.1055 m
5.822 10  C/m

2 2 8.99 10  N m /C

EL

k


 



   


	

22.91. 
2 k

E
L

 
 	

	
  9 2 2 8

4

2 8.99 10  N m /C 6.005 10  C/m2
0.1399 m 13.99 cm

2.425 10  N/C

k
L

E

 
 

   

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